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5 1, I N T R O D U C T I O N  

T H E  specific heat of a substance under given external conditions (denoted 
by x )  is defined by c,=(dQ/dT), ,  i.e. the ratio of the heat, added to a 
gram of the substance, to the temperature rise. In  most cases the specific 

heat is measured at constant pressure (c,) and at constant volume (c,). When 
experiments yield cv, as is the case in solids, this can be converted to c, by means 
of the general thermodynamical relation 

cP - C, = 9a2 V T / K ,  
where a is the coefficient of linear expansion, V the specific volume, K the com- 
pressibility, and T the absolute temperature. 

This conversion is necessary because the theory gives specific heats, or rather 
heat capacities, per gram molecule at constant volume, It is usual, in theoretical 
considerations, to ignore the expansion of the solid and the consequent changes 
in elastic properties ; this neglect involves only small errors (probably of a few 
per cent (Kellermann, 1941)), and can be remedied if the accuracy of the theory 
should warrant it. 

Historically, the theory of heat capacities falls into two distinct parts: (a) 
classical theory, which yielded a constant heat capacity per gram molecule 
of 3R(whereR is the gas constant per gram molecule), and (b )  quantum theory, 
due in the first instance to Einstein (1907), and given a more complete form by 
Debye (1912), Born and v. KPrmPn (1912), and Born (1923). The full implica- 
tions of the crystal theory of Born have, however, been worked out only recently 
(Blackman, 1935-7; Kellermann, 1941), and this has thrown some light on the 
more detailed properties of the heat capacity shown by experiments at  low 
temperatures. 

From the point of view of classical theory the rather complex problem of 
dealing with a large number of particles bound together to form a solid presented 
little difficulty. Since the solid is stable, the heat energy is simply the energy 
of a set of vibrating particles, the average value being 3NRT, ( N  is number of 
particles, R Boltzmann’s constant and T the absolute temperature). Hence 

This sufficed to explain the = 3NR, which is independent of temperature. 
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well-known law of Dulong and Petit-the atomic heat capacity at  constant 
pressure is equal to 6.2 for a large number of substances. I t  did not explain the 
exceptions to the Dulong and Petit law, the low values for some substances, 
e.g. diamond at normal temperatures, or the low values obtained a t  liquid-air 
temperatures for substances obeying the Dulong and Petit law at high tem- 
peratures (Behn, 1898). 

The solution to this difficulty was given in a fundamental paper by Einstein 
(1907), who applied the (then) new quantum theory of Planck to the motion of 
the particles of a solid, i.e. he replaced the classical mean energy for a linear 
oscillator E = k by the expression Z =hv/{exp. (hv/&T) - l}, where v is the frequency 
of oscillation and h is Planck's constant. The general problem was idealized 
by assuming every particle in the solid to vibrate with a single frequency, and 
the heat capacity for N particles then assumes the form 

This formula fitted the experimental data for diamond very well (as far as these 
were known, i.e. down to liquid-air temperatures). Though the fundamental 
difficulties were now solved, the details of the motion of the particles were not 
solved, and no very accurate agreement with experiment could be expected. 

As the Einstein theory indicates, it is essential to know more about the 
frequencies of vibrations of the solid. The general theory of the motion of a 
dynamically stable system of coupled particles shows that one can resolve the 
motion into a superposition of number of independent oscillations of the system 
(" normal vibrations "), there being 3N of these (more strictly, 3 N - 6 ) ,  if N 
is the number of particles in the system. Each of these normal vibrations will 
have a definite frequency. If these frequencies are known, the total heat 
capacity can immediately be determined, since it is simply the sum of the contri- 
butions due to the individual vibrations, 

C, = TE(hv/kT). 
A strict proof of this relation can be given, using quantum statistics (vide, for 

instance, R. H. Fowler, Statistical Mechanics). Quantum theory adds the zero- 
point energy, ihv, to the expression used by Einstein for the mean energy of a 
h e a r  oscillator, but the expression for the heat capacity remains unaltered. 

The above summation can be turned into an integral if we introduce a function 
p(v)Av giving the number of frequencies between v and v + A v ;  p(v) represents 
the vibrational spectrum. In terms of p(v) ,  the heat capacity becomes 

As regards the general features of the spectrum, one knows, firstly, that there 
is a lower limit which depends on the properties and dimensions of the crystal, 
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but which is sufficiently low to be put equal to zero for the purpose of calculating 
the specific heat; secondly, there is a definite upper limit (v,,,)-the highest 
frequency with which the solid can vibrate-which depends on the binding 
forces in the solid and on the masses of the particles taking part in the vibration. 

It follows that the heat capacity must be a continuously increasing function 
of the temperature, since the function E has this property ; also, since E(hvikT) = K 
when hv<kT, it follows that we obtain the classical form for C, when hv6kT.  
The accurate description of specific-heat phenomena depends on a knowledge 
of the spectrum. It is, for this reason, instructive to consider the various 
theoretical approximations to the spectrum implicit in the different theories of 
specific heat. 

Einstein’s theory replaces the whole of the spectrum by a single line at a 
definite frequency (chosen to fit the experimental data), which will usually be in 
the neighbourhood-of the maximum frequency. 

1 //p 
I 

? 

F i e  1. Vibrational spectra: (a) Einstein ; (b) Nernst-Lindemann ; (c) Debpe. 
The same d u e  has arbitrarily been chosen for &e chracterisdc 

frequency in each of the cases (a), (b)  and (c ) .  

Einstein’s specific-heat function proved rather unsatisfactory at low tempera- 
tures, and an empir id  formula was put forward by Nemst and Lindemanr! 
(1911) in order to fit the results. This consisted In replacing the spectrum by 
two ‘‘ lines ” of equal weight, one at a frequency Y and one at v 2. This specific- 
heat function was very successful over a wide region of temperatures, though it 
failed at the lowest temperatures. It is rather a curious point that  a theoretid 
justification for the Nernst-Lindemann s ~ e c t n u n  is proxiided by recent work on 
the spectrum of cubic crystals (see figures 3 , 1 , 5 ) .  

The next step in the development of the theoq =as made almost at the Same 
time by Debye (1912) and by Born and V. K M  (1912). Debpe showed that 
the function 4.) was proportional to I? in the region of low frequencies, where 
the theory of the solid could be replaced by that of an isotropic elastic c o n t i ” m  
-4n approximation to the spectrum was then obtained by continuing the P function 
UP to a maximum frequency vD and cutting off  the a: &is 
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(figure 1). 
vibrations (3N), i.e., 

The cut-off vD is chosen so as to give the correct total number of 

p(v)=av2, O < V < V ~  and av2dv=3N, r 
with 

where Y= volume of solid, p = density, K = compressibility, a = Poisson’s ratio. 
From this it follows that 

C, = a gE(hv/kT)dv r 
= 3ND(8/T) with 8 =hvD/k. 

The value of vD can be calculated from the elastic constants of the elastic con- 
tinuum, since the value of the constant a is determined by these elastic constants. 

The Debye formula has the following properties : 
(a)  the specific heat is determined by one parameter (O/T);  
( b )  at low temperatures (T<8/12) the specific heat is proportional to T3; 
(c )  at high temperatures the classical.value of 3Nk is approached in the 

form 

As to the spectrum, it was reasonable to believe that a satisfactory approximation 
had been obtained, since the detailed solution for a linear chain showed a great 
similarity to the corresponding “ continuum ” ’spectrum-the main difference 
being the heaping up of vibrations in the neighbourhood of the maximum 
frequency. It was thought that this effect would be less prominent in the 
three-dimensional case. 

Born and v. Kirmin discussed, in their first paper, the calculation of the 
frequencies of the vibrations of a simple cubic lattice. The detailed spectrum 
was, however, not worked out at that time and an approximate spectrum was 
constructed in close analogy with the spectrum of the linear chain. The distri- 
bution function p(v )  has the form (v,, being the maximum frequency) 

72N (sin-l ( V / V ~ ) ) ~  

4.1 = & ( 1  - v2/”02))f ’ 
which for small values of v/uo reduces to the v2 form. Both the spectrum and 
the resultant specific-heat function are rather more complicated than the corre- 
sponding Debye functions, without being superior in representing the results of 
experiments. The Born-v. Kirman function has accordingly receded into the 
background, but the geqeral theory on which the approximate function was 
built up has become a part of the lattice theory of vibrations, which forms the 
basis of much of the recent work on the specific heat of crystals, 
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83 -4 3 -75 3.71 86 
81 -4 3.54 3 a67 76.6 
69-0 3.13 3 -09 70 -0 
67 4 3-06 , 3 -02 62-9 

5.2. EARLY WORK ON T H E  L A T T I C E  THEORY OF SPECIFIC H E A T  

The work of Born and v. KarmPn was followed by a very interesting calculation 
by Thirring (1913, 14) on the specific heat of the cubic lattices dealt with by the 
former authors. Thirring showed that it was possible to work out the specific 
heat of these lattices at moderately high temperatures without working out the 
spectrum explicitly, and without any further approximations. The method is 
based on the following idea. If one writes the mean energy of a linear oscillator 
in the usual form, 

4-26 4.29 
4.11 3 -95 
3 -79 3 -66 
3 -36 3 -30 

hvlk T 
exp. (hv/&T) - 1 ' Z = +hv+kT 

and expands in powers of hv/kT, one obtains 
W 

where Bn are the Bernoulli numbers ; the first four have the following values : 
1 1 1 1 

Bl= g, B2= a, B3= a, B - - 
4 -  30' 

The heat capacity of the linear oscillator then becomes 

If hv/kT<Zr, this is a convergent series containing terms depending on 
9, ~ 4 ,  vB, etc. 

In order to obtain the specific heat for a lattice, it is necessary to sum the 
expression for all the 3N frequencies of vibration of the lattice, i.e., 

m 

(2n) ! 
Now the Born-v. KPrmPn treatment of the vibrations of a crystal lattice gave an 
expression for the frequencies in the form of a determinant involving 9. It is 
a relatively easy matter to work out Fvgn from this determinant for small values, 
of n, as was shown by Thirring, and so it was possible to work out fully the 
implications of the theory of the Born-v. KarmPn model, Results were obtained 
for NaC1, KC1, FeS, and CaF, (Thirring, 1914) as exemplified in table 1. 

Table 1 
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Thirring’s method is completely general and can be applied to any crystal; it 
has hardly received the prominence it deserves, especially as .it was, for about 
twenty years, the only calculation of specific heats which did not involve the 
usual approximations which obscure the whole of the effect of a crystal, i.e. a 
crystal as distinct from a continuum (in the Debye sense). 

The development of the theory of specific heats from this point onwards was 
concerned with the mathematical rather than with the physical side. The 
general theory of the vibrations of a crystal was worked out by Born (see Born, 
1923) following the earlier work of Born and v. Karmhn (1913). It was shown 
that the vibrations of a crystal could be divided into 3s groups, where s is the 
number of particles in the unit cell of the crystal. Of these, three represent 
low-frequency (long wave-length) vibrations which in the limit become identical 
with the vibrations of an elastic continuum. These are termed acoustical 
vibrations and the remaining 3s - 3 optical vibrations, the frequencies of these 
latter vibrations being, as a rule, of the order of optical frequencies (-1013). 

The general equations determining these frequencies were worked out for 
the case of central forces, but the determination of the spectrum was (and in most 
cases still remains) far too complex and laborious to be attempted ; the specific 
heat was therefore given only in an approximate form. In the simplest formu- 
lation, each of the three acoustical groups of vibrations was represented by a 
Debye spectrum and the optical vibrations by single-line (Einstein) spectra ; the 
specific heat then becomes 

c, = z q e j p ) +  E q e j / q .  
j - = l , Z , S  9-4 

The functions D and E are suitably normalized Debye and Einstein functions. 
In the case of monatomic crystals, in which the unit cell contains one particle, 
the above expression reduces to the terms with D only. 

The values of el, e,, 8, can be calculated from the elastic wzstants ; in some 
cases the values of the optical frequencies can be obtained from absorption bands 
in the solid, though these are not necessarily accurate representations of the 
positions of the maxima in the spectra. The calculations can therefore be carried 
out in only a few cases, mainly for crystals of the alkali-halide type. These were 
made by Forsterling (1920 b), who found good agreement with experiment in 
the cases of KC1, NaCl and CaF,. 

It should, however, be noted that in none of these is the agreement with 
experiment very much better than with a Debye formula, and that the initial 
approximations made to the spectrum are probably no closer in these cases than 
in the assumption of a Debye spectrum. The approximations involved can be 
seen in figure 2, in which the spectrum of a simple cubic lattice (Blackman, 1937) 
is given together with the representation as the sum of the three Debye spectra. 

The main use of the general formula of Born lies in its indication of the way 
in which an approximate formula can be built up in the case of complicated 
crystals; this serves a very useful purpose in calculating the entropy of such 
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crystals. An outstanding example of a representation on these lines is the 
specific-heat curve of benzene (Andrews, D. H. ; cf. Eucken, 1929). 

Some calculations on simple crystals at high temperatures were also made 
by Forsterling (1920 a, c) using the method of Thirring. The equations for the 
frequency of the vibrations were, however, those of the continuum and not those 
of the crystal lattice, so that there is no real advantage as compared with the Debye 
theory. 

V 

Figure 2. Vibrational spectrum of a cubic lattice, curve (a), together with the representation of 
the spectrum as a s u m  of three Debye spectra, curve (b), obtained from the low-frequency 
end of the spectrum. 

A rather different approach to the representation of the specific heat of com- 
plicated crystals (which show a deviation from Debye theory) was made by Lewis 
and Gibson (1917). The specific-heat curve was fitted with a function D(@/Tn), 
where n is an empirical constant. Some success was obtained, as is to be expected 
with two parameters instead of one, but there does not seem to be any theoretical 
justification for the form of the function. 

0 3. LATTICE THEORY AND SPECIFIC H E A T S  
A T  LOW TEMPERATURES 

Although the general theory of crystals did not at first provide a detailed 
description of the vibration spectrum, Born (1923) showed that when the wave- 
length of the vibration was long (compared with the crystal spacing) the crystal 
behaved like a continuum, and further (from the general theory of normal 
vibrations), that the spectrum followed the 9 law. On this point the theory 
agrees with and extends the Debye theory, and in particular it follows that the 
specific heat must follow a T3 law at " sufficiently " low temperatures. One of 
the points left open in the general theory is a mathematical description of the 
important adverb " sufficiently ". If the equations for the frequencies are 
known, the temperature below which the T3 law holds can be worked out from 
case to case, but it will depend very much on the fcrces between the particles in 
the crystal. 
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Debye (1912) showed that, in the case of an elastically isotropic medium, the 

heat capacity had the form (if T<B/12), 

12m4 ~3 C, = - Nk 3 ,  5 

($ . ;y ; c,,, is a mean velocity of elastic waves given by the 
h where e= 

relation 3/cm3 = l!a3 +2/c13 where q and ct are the velocities of the longitudinal 
aad transverse waves which can be determined from the elastic constants of the 
medium. In the general case (where the medium is not isotropic) the velocities 
of the three groups of waves, which are in general of a mixed character, depend 
on the direction of propagation. The same expression holds, however, with an 
appropriate definition of c,. This is (Born, 1923) 

where dQ is the element of solid angle in the direction associated with Cj. 

This quantity can be worked out from the elastic constants, and the value of 8 
found in this way should agree with that obtained from specific-heat data at 
low temperatures. It is of course necessary that the elastic data used should 
also be low-temperature values, but in general the extrapolation to low tempera- 
tures can be made without serious error. 

-4 number of investigations have been concerned with the calculation of the 
value of c,,, as the direct evaluation is rather laborious. In  the case of cubic 
crystals which are nearly isotropic, a simple formula has been given by Born 
and v. KArmrin (1914), namely, 

where ell, cup, c12 are the three elastic constants of the cubic crystal (invoigt’s 
notation), p the density, and it is assumed that (c12 - cll + ku)/(cll - cgp) is small 
compared with unity. (The original formula of Born and v. Kirmin includes 
a factor of 4n, which seems to be an oversight.) A very useful numerical method 
is due to Hopf and Lechner (1914); the method is applicable, in principle, to 
all cubic crystals, and can be extended to other types of crystals. The general 
applicability of the ’numerical method has, however, tended to obscure the 
usefulness of the Born-v. K h m h  formula. For example, the case of tungsten 
has been treated (Honnefelder, 1923) by the, by no means quick, numerical 
method, whereas the value of c,,, could have been worked out immediately as 
the elastic cofiatants for tungsten satisfy the condition for isotropy, i.e.. 
c12 - cI1 + 2cqp = 0. In the case where (c12 + cu) < cu an explicit formula can be 
given for the 8 value (Blackman, 1935 d). 

The first comparison of the theoretical values of c, (or 0) with those deduced 
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KCI 

T K. Cll c<4 ClZ 
280 4-09 0.634 0.60 
180 4-45 0.655 0.60 

0 4-91 0-669 13.60 

from experiments at low temperatures provided quite interesting results (Hopf 
and Lechner, 1914; Eucken, 1929) which are shown in table 2. 

Table 2 

I NaC1 

To K. c11 c44 c12 
400 4.40 1.234 1-17 
300 4-82 1.264 1.17 

0 5.85 1.339 1-17 

I Crystal I 8 (elastic data);. I f3 (thermal data) I 
KCI 
NaCl 
CaF, 
FeSe 

230 
296 
499 
682 

224 
286 
470 
645 

The increase in the value of c, can be obtained fairly accurately from the above 
elastic constants, and is -5 % for KC1 and -6 % for NaCl. One would expect 
that the 6 values for CaF, and FeS, would have to be increased by similar amounts. 
If this is the case, the discrepancy for CaF, becomes 11 yo ; these two values 
should, according to crystal theory, be identical. The case of CaF, is of particular 
interest as the specific heat at low temperatures follows the TS law so well as to 
make it one of the standard examples of the validity of this law. 

Discrepancies of about 10% fade, however, into the background when the 
comparison is made for some other single crystals (table 4 : cf. Eucken, 1929). 

Table 4 
substance f3 (elastic data) 8 (thermal data) 

Cadmium 180 128 
Zincblende 350 270 

2-2 
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astic data are for room temperature, the thermal data for -20" I(. 

rtiou!arly puzzling, because in the case of zinc the 
tures shows very good agreement with the T3 law 

'I'hese d ~ s ~ r ~ ~ ~ n ~ i e s  
specific heat at low 
1 f'lusius and 1-iafleck, 

-l'wo s ~ ~ ~ ~ s t ~ ~ ~ s  were made at th  
[ 1929) s ~ ~ ~ ~ ~ s ~ ~ ~  rhe ~ ~ s s ~ ~ ~ ~ ~ ~ ~  of 

uremrnt of the elastic COnSiCIEItS 

ou t  the ~ ~ ~ ~ ~ ~ ~ e ~ ~ t ~ ~  derived a theoretical " correction to the 0 (elastic) value 
of r h ~  rip131 s~rdcs o f  rmaenitasde. ~~~~~~~~~~y~ this correction does not appear 
to  he sound (Eucken, 1929; ~ ~ ~ : ~ ~ ~ ~ a ~ "  1935 a), as the two values must agree a t  

-4 certain amount of light was thrown on this 
point 'q i ~ ~ ~ ~ t ~ ~ ~ ~ ~ r ~ ~ s  into the specific heats of lattices, which showed that a 

'' continuum " region has been 
o be found (Blackman, 1935 b). 
bye, T<6/12, was by no means 

eratures ". The conclusion is, there- 
eat at still lower temperature in the 

that ~ v e ~ t u a i ~ y  the true T3 region 
alue should fit with that determined 

here n e  ~ e ~ ~ ~ r e ~ ~ n ~ s  of a few substances at helium temperatures, which 

In 
these cases there is a ~ ~ m ~ ~ ~ c a t ~ o n  in that the specific heat due to the free elec- 
becomes important. This is a tern4 proportional to T (cf. Sommerfeld and 

eche, 1933), and the 8 value at 4' K. was found by fitting a curve C,,=aTibT3, 
I n  the 

The 6 (elastic) values f ~ r  

e to account for the 
systematic errors 

r i i~eisen and Goens (1926), who carried 

cit.ntly i i t ~ ,  ~ e ~ ~ ~ ~ ~ ~ t ~ r ~ ~ ~  

f r m :  elastic data at I\;w temperatures. 

allow the above cond 
Rccscarn and van den 

ions to Re tested (table 5). Zinc has been investigated by 
de ('1932), silver by Keesom and Kok (1932) (table 8). 

~ ~ ~ ~ ~ ~ ~ r e ~ e ~ ~ ~ ~  it he assumed that b was constant b e h . ~  4" K. 
case of rocksalt and sylvinc. re are direct measurements by Clusius and Perlick 
jcide Keesorn, 1934) and hl; Iieesom and Clark (1935). 
the two lass-named substances are due to Durand (1936). 

Table 5 



The theory of the spec@ h a t  of solids 21 

temperature, is not more than 5 yo. The subtraction of the electronic term does, 
however, make the value somewhat uncertain, and it may be as low as 220 at 

What does seem evident from the above is, that the specific-heat curve 
should be followed to much lower temperatures than one would have thought 
likely on the Debye theory. A critical review of the Debye theory does, therefore, 
appear necessary. 

2” K. 

$4. COMPARISON O F  DEBYE THEORY W I T H  EXPERIMENT 
The Debye theory had remarkable success in representing the variation with 

temperature of the specific heat of a large and varied assortment of substances. 

Table 6 
0 

T-8 T d / 6  T-$jl2 

180 172 162 
220 210 209 
315 317 319 
230 224 220 

88 87 85 

Substance Reference 

Clusius and Harteck (1928) 
Eucken, Clusius, and Woiteneck (1931) 
Docfrerty (1937) 
Simon and Zeidler (1926) 
Keesom and v. d. Ende (1931); Eucken 

and Schwers (1923) 

Gold 
Silver 
copper 
Platinum 
Lead 

430 379 356 
150 159 - 
99 98 - 

310 305 337 
378 378 378 

Simon and Swain (1935) 
Simon and Zeidler (1926) 
Simon and Zeidler (1926) 
Lange (1924) ; Zwikker (1928) 
Simon and Zeidler (1926) 

Lithium 
sodium 
Potassium 
Tungsten 
iMoIybdenum 

- 318 329 
170 147 129 
240 211 205 

Clusius and Vaughan (1930) 
Lange and Simon (1928) 
Clusius and Harteck (1928) 

Magnesium 
Cadmium 
Zinc 

Sylvine 
Silver bromide 
Silver chloride 

230 225 218 Southard and Nelson (1933) 
156 137 118 Eucken, Clusius, and Woiteneck (1931) 
211 170 133 Clusius and Harteck (1928) 

It is hardly surprising that it was taken for granted that the underlying assumption 
(i.e. the general form of the vibrational spectrum) was sound, so long as the 
agreement was good. This tendency took a rather exaggerated form when it 
was thought necessary- to assume ‘‘ extra ” effects whenever deviations from the 
Debye theory were observed-an interesting example of what Spengler terms 
the ‘ I  canonization ” of a physical theory. 

The Debye theory was originally derived for monatomic and (elastically) 
isotropic substances. It has been applied unhesitatingly to all types of crystals. 
Seeing that the v2 law for the spectrum is perfectly general, there does indeed 
seem no valid reason for dw”a tion. It should be noted that the lower end 
of the spectrum-in tbe isotropic case-is made up of separate contributions 

. . .  
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NaCl 

T O K .  e - - . i o 4  C, 
T3 

20 288 0.388 
15 297 0.356 
10 308 0.334 

from (a) longitudinal, (b)  transverse waves, and that the relative weights of these 
can be varied over a considerable range if the two elastic constants of an isotropic 
medium are allowed, to vary. There is, &deed, only one cubic crystal for which 
the condition for isotropy is perfectly fulfilled-tungsten-and this is one of the 
cases where an appreciable deviation from the Debye curve is found. 

I n  table 6 the experimental results are shown for a variety of substances. 
The Debye function gives a unique correlation between the heat capacity 
per gram atom and the value of 8/T. Hence any specific-heat curve can 
be represented (as a function of T) by a set of values of 8 as a function of T. 
A perfect fit with the Debye curve would mean a constant value for 8. In the 
table the values of 6' are given in three temperature regions-at relatively high 
temperatures, at relatively low temperatures (where the T3 region should start 
on Debye theory) and at an intermediate temperature. 

The conclusion from the table would certainly be that in general the agreement 
is good, particularly for face-centred cubic crystals. There are deviations for gold 
and for tungsten of about 1074 in the 8 value in the extreme cases, and rather 
larger deviations for lithium, zinc and cadmium (30 74 to 50 %). These three 
substances are strongly anisotropic elastically, and it might seem that there is a 
correlation between this " anisotropy " and the deviation from the Debye theory 
(Fuchs, 1939). Against this may be set the case of potassium, which has much 
the same elastic properties as lithium; the 8 value for potassium (99) shows no 
variation as far as the measurements go (Simon and Zeidler, 1926). Further, 
the 8 value from elastic data at low temperatures (Bender, 1937) is 96.5. It 
seems certain, therefore, that even if a variation in the 0 value should occur at 
lower temperature than those measured, the behaviour will be quite different 
from that of lithium. 

The agreement between Debye theory and experiment becomes surprisingly 
different, however, if one considers lower temperatures, T<8/12, i.e. the region 
where the T3 law" ought " to hold (eride table 7). 

Table 7 
~~~ 

KCI Li 

T"K. 8 -.lo4 CU T"s.  0 - . l o 4  G 
- F T3 

14 213 0.960 30 356 0-101 
8 222 0.832 20 340 0.118 
4 236 0.708 1 5  328 0.131- 
3 227 0.798 

In the above table Cu is, in the case of NaCl and KCI, the molar heat capacity and, 
in the case of Li, the atomic heat capacity. 

It will be seen that the T3 law is rather elusive. In  both lithium and NaCl 
it seems that the ratio C,/T3 is tending to become constant, but there is r.0 sign 
of a constant region having been reached at the lowest temperature. 
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The variation for KC1 (Keesom and Clark, 1935) is rather peculiar, especially 
below 4" K., and this may be spurious; Clark (1935) suggests that this " dip " 
in the value of 8 may be due to the desorption of helium adsorbed on to the sylvine 
-a small quantity of helium had to be admitted to the calorimeter in order to 
ensure good heat contact. This view is supported by the difference in the 0 
value at 3" K. and that derived from elastic data (0 = 246). What is clear in any 
event is, that for suck a " standard " crystal as KC1 the T3 region does not 
start above 4" K., i.e. even at T = 6/50. 

Similar resdts are obtained when one considers silver and zinc (table 8). 

Table 8 

Silver Zinc 

1.671 
2.037 
3.079 
3.534 
5.4 
7 .O 

10.0 
14.0 
16 *O 
18.0 
20 s o  

0.0004149 
0-0006537 
0.001664 
0 -002253 
0.00634 
0.0151 
0.0475 
0-1336 
0.2020 
0.2898 
0.3995 

- 
- 
- 
- 

0.401 
0.439 
0.475 
0.486 
0.493 
0.497 
0.500 

173.5 
181.8 
200.9 
208.6 
226 
219 
214 
212 
211 
210 
209 

2 *o 
3.2 
4 .O 
6 *O 

10.0 
14.0 
16.0 
12*95* 
14.45* 
16.40" 
18.58* 

0.000386 
0.000935 
0.00135 
0.00476 
0.0387 
0.137 
0.219 
0.1 140 
0.1645 
0.233 
0.344 

- 
- 
- 
- 

0.387 
0.499 
0.534 
0.511 
0-542 
0.528 
0,535 

212.6 
253.8 
268.5 
265.0 
229.2 
210.2 
205.6 
207 
204 
206 
205 

The above data are due mainly to Keesom and van den Ende (1932) and Keesom and 
Kok (1932) ; the starred values are taken from a paper bv Clusius and Harteck (1928). 

It will be seen that there is a small region where C4T3 is nearly constant, 
followed, however, by a drop as the temperature is decreased, i.e. a rise in the 
6 value. This rise would be further accentuated if allowance were made for 
the heat 'capacity of the free electrons, which becomes important below 10" K. 
and which is responsible for the final drop in the 8 value. One can attempt to 
separate the two effects, as the electronic specific heat will be proportional to T, 
but this is not necessary for our purpose. The main points are that the agreement 
with the Debye theory is by no means good in this region of very low temperature, 
that there is no clear sign of the true T3 region, and that there is a spurious T 3  
region over a short range of temperatures near 20" K. 

There are, however, two cases in which very good agreement is obtained. 
These are the standard example, CaF,, and FeS,; the constancy of C,iTS is 
practically perfect over a range of O/T from 12 to 25 in each case. The only 
point which arises here is that both the O values, 470 and 645, are lower than the 
values obtained from elastic constants at room temperature (namely, 499 and 
682 respectively), and the discrepancy would be increased if low-temperature 
values were taken. 
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The experimental evidence for the existence of a T3 region in the specific 
heat is, on the whole, weak (cf., in this connection, Eucken and Werth, 1930) ; in 
no case has it been clearly demonstrated that the true T3 region has been reached ; 
this would involve correspondence between (‘ thermal ” and ‘( elastic ” values of 
8, and there is no case where there is exact agreement. What evidence there is 
on this point seems to be that the true T3 region, if it exists at all, will be in the 
region below 4” K. for most substances. 

It is also evident that the good agreement of the Debye theory with experiment 
does not in general extend to the region of very low temperatures. It is on this 
point that the lattice theory of specific heats has been able to throw some light. 

5 5. LATTICE THEORY O F  S P E C I F I C  HEATS 
The general explanation of the effects discussed ins4 seems to be that the Debye . 

theory deals with a crystal as if it were an elastic continuum, and that the specific 

t 

L 
O U2 11.4 

-. .\ 

V 

Figure 3 (a). Vibrational spectrum of a simple cubic lattice, curve a, together with 
the three branches b, c, d which make up the spectrum (Blackman, 1937 a), 

(Reproduced by permission of the Council of the Royal Society.) 

crystal properties are of much greater significance than had been realised. In  
particular, the vibrational spectrum of a crystal can be very different from a 
Debye spectrum. This was first demonstrated in an investigation on the 
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vibrational spectrum of a two-dimensional Iattice (Blackman, 1935 b), and con- 
firmation of this was obtained in a calculation of the spectrum of a simple cubic 
lattice (Blackman, 1937) of the type discussed by Born and v. Kirman (1912) 
in their first paper on the specific heats of solids. They worked out the equations 
for the frequencies of a lattice of the NaCl type, with forces between neighbours 
and " next neighbours ", and showed that the model represented a fair approxima- 
tion (cf. also the work of Thirring, above). 

1101 I I 1 I I I I I I 

0 Io 20 30 40 50 60 70 80 "1: 

T 
Figure 3 ( b ) .  B,T curve for the vibrational spectrum of figure 3 (a) (Blackman, 1937 a). 

(Reproduced by permission of the Council of the Royal Society.) 

The spectrum obtained with a particular model is shown in figure 3 (a). 
T h e  variation of the 8 value with temperature (when the specific heat is calculated 
from this spectrum) is shown in figure 3 (b ) .  The constants involved in the 
calculation were chosen, for convenience, in a manner which made the lattice 
rather anisotropic elastically, more so than is the case for KC1-which is otherwise 
the nearest approach to the model. 

V 

Figure 4. Vibrational spectrum of a body-centred cubic Iattice (Fine, 1939). 
(RReproduced from the ' Physical Review ' by permission of the American Physical Society.) 

Calculations on the lines of a Born-v. KBrmiin model have been made by 
Fine (1939) for a body-centred lattice with the force constants chosen so as to 
fit the case of tungsten. Though one 
would have thought such a model a rather poor substitute for a metal, the calcula- 
tion does show the main features of the specific-heat curve (the increase in 0 as  
the temperature is lowered (cf. table 6)), without, however, giving complete 
agreement. 

The spectrum is shown in figure 4. 
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A careful investigation of NaCl has recently been made by Kellermann 
(1940, 41) using ionic and repulsive forces between the particles. The resultant 
spectrum (figure 5 (a)) shows the same general features as that.obtained with the 
Born-v. Khrmhn model, and the specific heat shows remarkable agreement with 
experiment (figure 5 (b ) ) .  The work of Kellermann confirms the view that the 
deviation of the specific heat of NaCl from a Debye curve below 20" K. is due 
to the inadequacy of that theory and represents no new phenomenon. It also 
shows that the true T3 region is to be found at very low temperatures-as has 
already been suggested by the calculations on lattice models. 

320r  

2 X r X l P '  T 

Vibrational spectrum of sodium chloride (Kellermann, 1941). 
0,T m e  for sodium chloride. 

Figure 5 (a). Figure 5 (b).  
Figure 5 (a). 
Figure 5 (a). The smooth curve is constructed from 

experiment. The points shown are calculated (Kellermann, 1941). 
(Reproduced by permission of the Council of the Royal Society.) 

-4 calculation of the vibrational spectrum of lithium due to Fuchs (1936 b), is 
based on the assumption that one can obtain the spectrum from the " continuum " 
end alone, with an appropriate cut-off, at any rate for such an extremely aniso- 
tropic case. Though it is likely that a very anisotropic substance will have an 
anomalous spectrum, it is not easy to see how one can obtain more than a vague 
indication of the whole spectrum from the behaviour at, very low frequencies. 
The assumption could be tested only if one knew the whole spectrum ; a case 
which fulfils this requirement is the cubic lattice discussed above (Blackman, 
1937), which shows a great deal of elastic anisotropy. The comparison with three 
Debye spectra (figure 2) shows no particular agreement; though the method 
used by Fuchs is somewhat different, and smooths out the sharp peaks, the general 
principle .of the method is the same as that which gives the three Debye spectra, 
and the agreement with the true spectrum cannot be expected to be good. 

$ 6 .  L A T T I C E  THEORY A N D  DEBYE THEORY 
In  order to understand the details of the variation of the specific heat with 

temperature, it would seem to be necessary to calculate the spectrum in each 
case. Beside being in general extremely tedious, if not impossible, such calcula- 
tions are hardly likely to throw much light on general questions. For instance, 
the relation of the Debye theory to the lattice theory is of some interest, especially 
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as the lattice theory has no alternative " formula " to offer to experimentbl 
physicists. 

One of the main features of the Debye function is its dependence on one 
parameter only. Lattice theory suggests that a one-parametric representation 
cannot be valid in general. To show this one can consider the specific heat in 
two limiting cases-high temperatures and low temperatures ( T3 region). At 
high temperatures the specific heat is controlled by the sum of the squares of the 
frequencies of the normal vibrations of the crystals, i.e. by Jp(v)v2dv (cf. the 
discussion on the work of Thirring in 4 2) ; it follows from this that the low- 
frequency end of the spectrum plays no part in determining the value of the 
integral (and hence the 8 value at high temperatures). The 8 value at very low 
temperatures, on the other hand, is controlled by the low-frequency end of the 
spectrum; this can, in particular cases, be varied a great deal (by varying the 
forces between particles) without altering the high frequencies appreciably, e.g. 
in the case of a Born-v. Kirmin model of a simple cubic lattice with weak shear 
forces, the density of the vibrations at low frequencies can be made very large 
without changing the high-frequency end (Blackman, 1935 b). It can further 
be'seen that in the general case the 8 values at low and at high temperatures 
depend on quite different combinations of the forces between particles, so that 
complete agreement cannot be expected. 

So far only the 9 values at the two ends of the specific-heat curve have been 
considered. The specific heat in the intermediate region is controlled by the 
spectrum as a whole. The resemblance of the calculated spectra to the Nernst- 
Lindemann spectrum is rather striking, and, as pointed out by Debye (1912), 
the two functions give practically the same specific-heat function over a large 
range of temperatures, though deviating at low temperatures. In particular 
cases this might account for an almost perfect Debye curve at moderately high 
temperatures. 

A rather interesting property of the spectrum, which has some bearing on the 
variation of specific heats, is found in all the lattices for which the spectrum has 
been analysed; the density of normal vibrations, which starts o f f  as  a v2 law, 
seems to rise faster than v2 as soon as the " continuum " region is passed. This 
was shown to be a consequence of lattice theory for the Born-v. Kirman models 
of the simple cubic lattice (Blackman, 1937 b), and it can also be seen to be a 
general property of lattices in which short-range forces are employed. No 
general proof has so far been obtained, and it is by no means certain that the law 
is a general one ; the same effect does, however, occur in ionic crystals as well, 
as can be seen by examining the work of Kellermann (1940). The linear (ionic) 
chain also shows this property (Broch, 1937). 

This property of the spectrum means that the value of C,jT3, which should 
be constant at " sufficiently " low temperatures, will show an increase as the 
temperature is raised ; in terms of Debye theory the 8 value will drop, the magni- 
tude of the '' drop " depending, however, very much on particular properties 
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of the spectrum. It is this effect which moves the true T3 region to such low 
temperatures-in the case of the lattices investigated to a temperature T<6/50, 
possibly even to T<8/100 (Blackman, 1937, p.430). This means, for all practical 
purposes, no T3 region at all, as measurements at helium temperatures are a 
rarity. 

In view of all the complications which occur in the lattice theory of specific 
heats, the Debye theory is remarkable, not in that it fails in some cases rather 
badly, but for the fact that it succeeds so well for most crystals. One is less. 
surprised at deviations of, say, 30 yo in the B value (e.g. lithium) than at a deviation 
of less than 10 yo (e.g. NaCl, KC1 and Ag). 

8 7. MISCELLANEOUS APPLICATIONS O F  LATTICE THEORY 

The deviation of the specific heat from a Debye curve for some substances,. 
e.g. lithium, led to the hypothesis that there is an extra term in the specific heat 
due to an " electronic excitation " (Simon, 1926). The case of lithium has aroused. 
particular interest as the variation of the expansion coefficient with temperature 
-which in most crystals follows the same course as the specific heat-showed a 
different behaviour (0=525, instead of 330-430). As long as there is no actual 
maximum in the specific-heat curve, there is no reason to suppose that the lattice 
theory alone will not account for the variation of specific heat; in the case of' 
lithium the recently calculated (Fuchs, 1936) and measured (Bender, 1937) 
elastic constants give values of &namely, 354 and 333 respectively-which 
agree quite well with that obtained from the specific heats at low temperatures 
(328). This forms conclusive evidence that, in the case of lithium, a value of 
525 .is incorrect, and hence the assumption of an extra specific-heat term is 
unnecessary. The evidence for sodium and potassium also indicates that the 
vibrational specific heat alone will be sufficient to account for the observed specific 
heats. 

It has been the practice in early accounts of the theory of specific heats to 
compare the high-frequency end of the spectrum (or the 6 value) with that obtained 
from other data, e.g. from Reststrahlen in the case of ionic crystals, from the 
variation of the expansion coefficient and from the variation of resistance with 
temperature. All these methods yield frequencies (or 8 values) which agree 
more or less with that obtained from a Debye curve, but it is difficult to see what 
the comparison actually means. The spectrum of NaCI, for example, extends 
well above the frequency at which the main absorption of infra-red radiation takes 
place, and also well above the Debye frequency (vD=KB/h). The danger of 
comparing values from different phenomena is well illustrated by the case of 
lithium, discussed above. Until the theories of the variation of the expansion 
coefficient and of the variation of resistance with temperature have been more 
carefully analysed, it is as well not to draw conclusions from apparent discrepancies, 
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$8. G E N E R A L  C O N C L U S I O N S  

The  main feature in the recent developments of the theory of the specific 
heat of solids has been the emergence of the vibrational spectrum, which shows 
a different character from that assumed by Debye ; this represents a vindication 
.of the method adopted originally by Born and v. Kirman, which method, however, 
was not carried out completely at  the time. The properties of the vibrational 
spectrum explain the deviations from Debye theory observed at low temperature 
for the (vibrational) specific heat, and enable one to clear up points such as 
the existence of T3 regions which are not true T3 regions. These latter 
regions occur in general at much lower temperatures than one would expect on 
Debye theory, in many cases at such low temperatures that they are not likely 
to be of practical interest. 
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