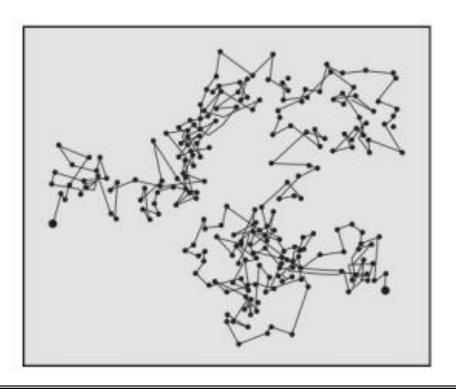
Atomismo na Física Movimento Browniano

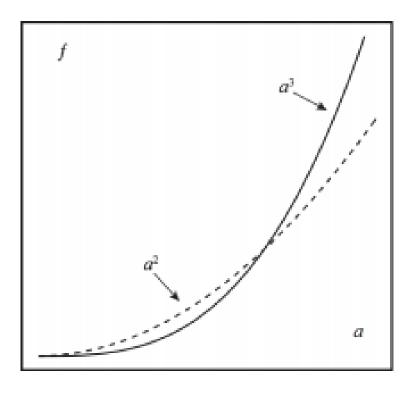
Vitor Oguri

Robert Brown (1828) - movimento aleatório de partículas (grãos de pólen) em suspensão em um fluido (líquido)

A princípio, se poderia esperar que, devido ao caráter aleatório do movimento das moléculas, o número de colisões sofridas por cada partícula browniana fosse o mesmo para qualquer direção, ou seja, os choques se compensariam e a partícula permaneceria imóvel. Entretanto, do ponto de vista estatístico, os valores médios de grandezas como a concentração das partículas¹ e a pressão exibem flutuações, de modo que, em um dado instante, qualquer partícula está sujeita a choques não compensados ("").



Se o raio (a) e, portanto, o volume (V) e a massa (m) das partículas brownianas forem muitíssimo maiores que os das moléculas do líquido, cujos raios são da ordem de 10^{-7} cm, o peso prevalece, e, mesmo sofrendo colisões, a partícula praticamente não se move. Porém, para partículas com dimensões da ordem de $10^{-4} \sim 10^{-5}$ cm, choques não compensados acarretarão uma espécie de movimento convulsivo das partículas. Nesse sentido, o movimento browniano revela a existência do movimento molecular desordenado das moléculas de um líquido.



Entre 1905 e 1908, Einstein publicou cinco artigos sobre o movimento browniano. Cronologicamente, o primeiro deles foi a sua tese para obtenção do título de *Doctor der Philosophie* pela Universidade de Zurique, em 1905, a qual ele propunha, a partir de um estudo teórico sobre o equilíbrio de moléculas solutas em um fluido (solvente), um novo método de determinação das dimensões lineares (a) de uma molécula e do número de Avogadro (N_A) .

Langevin (1908)

Do ponto de vista estritamente hidrodinâmico, considerando que, em uma solução diluída, as moléculas do soluto de massa m são pequenas esferas de raio a, as quais individualmente se movem de acordo com as leis newtonianas de movimento em um meio de viscosidade η , o deslocamento individual de cada molécula em uma direção x obedece à equação de movimento proposta por Langevin, em 1908,

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = -bv + f(t)$$

em que v é a velocidade dos constituintes do soluto, f(t) é uma força de intensidade aleatória dependente do tempo t, devida às colisões das moléculas do soluto com as do solvente, e b é o coeficiente de atrito, dado pela lei de Stokes ($b = 6\pi \eta a$).

Multiplicando-se a equação (4.13) pelo deslocamento (x) da molécula, obtém-se

$$mx\frac{\mathrm{d}v}{\mathrm{d}t} = m\left[\frac{\mathrm{d}}{\mathrm{d}t}(xv) - v^2\right] = -bxv + xf(t)$$

a qual pode ser escrita como

$$\frac{\mathrm{d}}{\mathrm{d}t}(xv) + \frac{b}{m}(xv) = v^2 + \frac{x}{m}f(t)$$

Suponha que a velocidade média quadrática das partículas em movimento aleatório em uma dimensão, em equilíbrio térmico com um sistema à temperatura T, seja dada pela Teoria Cinética dos Gases (Seção 3.1.2) por

$$m\langle v^2 \rangle = kT$$

e que, do ponto de vista estatístico, os valores x e f não sejam correlacionados, isto é,⁵

$$\langle x f \rangle = \langle x \rangle \langle f \rangle$$

Uma vez que o deslocamento médio é nulo, $\langle x \rangle = 0$, a equação de movimento, equação (4.14), pode então ser escrita para os valores médios como

$$\frac{d}{dt}\langle xv \rangle + \frac{b}{m}\langle xv \rangle = \langle v^2 \rangle$$

A solução geral dessa equação de movimento para $\langle xv \rangle$ contém um termo transitório proporcional a $e^{-t/\tau}$, em que $\tau = m/b$ é um tempo de relaxação, e outro permanente, que descreve o comportamento da partícula para intervalos de tempo muito maiores que τ , quando o equilíbrio térmico é atingido e, portanto, $\langle v^2 \rangle = kT/m$.

Assim, para $t \gg \tau$, a solução pode ser escrita como

$$\langle xv \rangle = \frac{1}{2} \frac{d}{dt} \langle x^2 \rangle = \frac{kT}{h}$$

Uma vez que a relaxação é extremamente rápida, para intervalos de tempo de observação muito maiores que o tempo de relaxação $(t \gg \tau)$, o valor médio dos quadrados dos deslocamentos das partículas do soluto é obtido por integração direta da equação (4.15).

Levando em conta que $b = 6\pi \eta a$, o resultado não depende de suas massas e é dado pela fórmula de Einstein, equação (4.9),

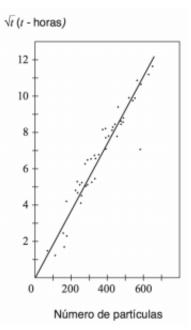
$$\langle x^2 \rangle = \left(\frac{kT}{3\pi \eta a}\right) t \qquad \qquad \left(t >> \frac{m}{6\pi \eta a}\right)$$

Desse modo, tanto a abordagem original de Einstein como a de Langevin mostram que o problema pode ser encarado a partir de uma visão mecânica newtoniana, apesar dos argumentos estatísticos.

Se n é a concentração de partículas brownianas, pode-se escrever o número de partículas coletadas por unidade de área, em um dado intervalo de tempo, como

$$\mathcal{N} \simeq \frac{1}{2}n\lambda_x = n\sqrt{\frac{D}{2}}\sqrt{t}$$

na qual se usou a equação (4.10); o fator 1/2 decorre do fato de se observarem as partículas que se deslocam apenas em um sentido.



Experimentos de Perrin (1908)

Portanto, para seus experimentos, Perrin precisava preparar uma suspensão aquosa, na qual as partículas suspensas satisfizessem às seguintes condições:

- ser suficientemente grandes para serem vistas individualmente, mas pequenas o bastante para terem comportamento térmico semelhante ao dos gases e, dessa forma, se poder quantificar seu movimento;⁷
- ter todas tamanho e massa uniformes.

Figura 4.6: Esquema do aparato de Perrin para observação da distribuição de partículas brownianas no campo gravitacional terrestre.

Em seguida, para fazer observações quantitativas, a emulsão foi preparada na horizontal, com a objetiva do microscópio verticalmente posicionada (Figura 4.8).

Do ponto de vista teórico, embora mais densas que a água, essas pequenas partículas ficam em suspensão distribuídas como mostra a Figura 4.7, ou seja, há uma densidade maior de partículas na região inferior do recipiente, que vai diminuindo à medida que se vai aproximando da superfície.



Figura 4.8: Esquema do aparato de Perrin para medir a concentração de partículas brownianas em vários níveis da emulsão.

Admitindo-se que, ao longo da vertical, a concentração (n) de partículas brownianas de massa m e volume V, em equilíbrio térmico à temperatura T, obedeça à fórmula barométrica, equação (3.24), deve-se ter

$$\frac{n}{n'} = \exp\left(-\frac{mgh}{kT}\right) = \exp\left(-\frac{N_A mgh}{RT}\right)$$

na qual n e n' são as concentrações em duas alturas separadas por uma distância h e g é a aceleração local da gravidade.