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From about the beginning of the twentieth century experimental physics
amassed an impressive array of strange phenomena which demonstrated the in-
adequacy of classical physics. The attempts to discover a theoretical structure for
the new phenomena led at first to a confusion in which it appeared that light, and
electrons, sometimes behaved like waves and sometimes like particles. This ap-
parent inconsistency was completely resolved in 1926 and 1927 in the theory called
quantum mechanics. The new theory asserts that there are experiments for which
the exact outcome is fundamentally unpredictable, and that in these cases one has
to be satisfied with computing probabilities of various outcomes. But far more
fundamental was the discovery that in nature the laws of combining probabilities
were not those of the classical probability theory of Laplace.

I want to discuss here the laws of probability of quantum mechanics. The sub-
ject is over twenty years old and has been expertly discussed in many places. My
only excuse for speaking about it again is the hope that, being mathematicians,
all of you may not have heard of it in detail. And you may be delighted to learn
that Nature with her infinite imagination has found another set of principles for
determining probabilities; a set other than that of Laplace, which nevertheless does
not lead to logical inconsistencies. We shall see that the quantum mechanical laws
of the physical world approach very closely the laws of Laplace as the size of the
objects involved in the experiments increases. Therefore, the laws of probabilities
which are conventionally applied are quite satisfactory in analyzing the behavior
of the roulette wheel but not the behavior of a single electron or a photon of light.

I should say, that in spite of the implication of the title of this talk the concept
of probability is not altered in quantum mechanics. When I say the probability of
a certain outcome of an experiment is p, I mean the conventional thing, that is, if
the experiment is repeated many times one expects that the fraction of those which
give the outcome in question is roughly p. I will not be at all concerned with analyz-
ing or defining this concept in more detail, for no departure from the concept used
in classical statistics is required.

What is changed, and changed radically, is the method of calculating proba-
bilities. The effect of this change is greatest when dealing with objects of atomic
dimensions. For this reason we shall illustrate the laws of quantum mechanics by
describing the results to be expected in some experiments dealing with a single elec-
tron. The experiment is illustrated in figure 1.

At A we have a source of electrons S. The electrons at S all have the same
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energy but come out in all directions to impinge on a screen B. The screen B has
two slits, 1 and 2 through which the electrons may pass. Finally behind the screen
B at a plane C, we have a detector of electrons which may be placed at various dis-
tances X from the center of the screen.

If the detector is extremely sensitive (such as a Geiger counter) it will be dis-
covered that the current arriving at X is not continuous, but corresponds to a rain
of particles. If the intensity of the source S is very low the detector will record
pulses representing the arrival of a particle, separated by gaps in time during which
nothing arrives. This is the reason we say electrons arg particles. If we had de-
tectors simultaneously all over the screen C, with a very weak source S, only one
detector would respond, then after a little time, another would record the arrival
of an electron, etc. There would never be a half response of the detector, either an
entire electron arrives or nothing happens. And two detectors would never respond
simultaneously (except for the coincidence that the source emits two electrons
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FIGURE 1

An experiment to determine the probability that electrons arrive at a detector at X

within the resolving time of the detectors-a coincidence whose probability can be
decreased by further decrease of the source intensity). In other words the detector
records the passage of a single corpuscular entity traveling from S through the
holes in screen B to the point X.

(Incidentally, if one prefers one can just as well use light instead of electrons in
this experiment. The same points would be illustrated. The source S could be a
source of monochromatic light and the sensitive detector a photoelectric cell or
better a photomultiplier which would record pulses, each being the arrival of a
single photon.)
What we shall measure for various positions X of the detector is the mean num-

ber of pulses per second. In other words we shall determine experimentally the
(relative) probability P that the electron passes from S to X, as a function of X.
The graph of this probability as a functionX is the complicated curve illustrated

qualitatively in figure 2(a). It has several maxima and minima, and there are loca-
tions near the center of the screen at which electrons hardly ever arrive. It is the
problem of physics to discover the laws governing the structure of this curve.
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We might at first suppose (since the electrons behave as particles) that
I. Each electron which passes from S to X must go either through hole 1 or

hole 2. As a consequence of I we expect that:
II. The chance of arrival at X should be the sum of two parts, Pi, the chance

of arrival coming through hole 1, plus P2, the chance of arrival coming through
hole 2.
We may find out if this is true by direct experiment. Each of the component

probabilities is easy to determine. We simply close hole 2 and measure the chance
at arrival at X with only hole 1 open. This gives the chance P1 of arrival at X for
those coming through 1. The result given in figure 2(b). Similarly, by closing 1 we
find the chance P2 of arrival through hole 2, [figure 2(c)].
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FIGURE 2

Results of the experiment. Probability of arrival of electrons at X plotted against the position
X of the detector.

The sum of these [figure 2(d)] clearly does not agree with the curve (a). Hence
experiment tells us definitely that, P #6 P1 + P2 or that II is false.

The chance of arrival at X with both holes open is not the sum of the chance
with just hole 1 open plus that with just hole 2 open.

Actually, the complicated curve P(X), is familiar inasmuch as it is exactly the
intensity of distribution in the interference pattern to be expected if waves starting
from S pass through the two holes and impinge on the screen C. We can state the
correct law mathematically by saying that P(X) is the absolute square of a certain
complex quantity (if electron spin is taken into account it is a hypercomplex quan-
tity) +(X) which we call the probability amplitude of arrival at X and furthermore
+(X) is the sum of two contributions 01, the amplitude of arrival through hole 1
plus 42 the amplitude of arrival through hole 2. In other words,

III. There are complex numbers 01, and 4'2 such that

and
P, = 10 1 2, P2 = 11+212.
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We discuss in a little more detail later the actual calculation of q5 and 42. Here we
say only that 01, for example, may be calculated as a solution of a wave equation
representing waves spreading from the source to 1 and from 1 to X. This reflects
the wave properties of electrons (or in the case of light, photons).

To summarize: we compute the intensity (that is, the absolute square of the
amplitude) of waves which would arrive in the apparatus at X, and then interpret
this intensity as the probability that a particle will arrive at X.
What is remarkable, is that this dual use of wave and particle ideas does not

lead to contradictions. This is only so if great care is taken as to what kind of
statements one is permitted to make about the experimental situation.
To discuss this point in more detail we first consider the situation which arises

from the observation that our new law III of composition of probabilities implies
in general, that it is not true that P = P1 + P2. We must conclude that when both
holes are open it is not true that the particle goes through one hole or the other.
For if it had to go through one or the other we could classify all the arrivals at X
into two disjoint classes, namely, those arriving via hole 1 and those arriving
through hole 2, and the frequency P of arrival at X would be surely the sum of the
frequency P1 of those coming through 1 and of those coming through hole 2, P2.
To extricate oneself from the logical difficulties introduced by this startling

conclusion one might try various artifices.
We might say perhaps, for example, that the electron travels in a complex

trajectory going through hole 1, then back through hole 2 and finally out through 1
in some complicated manner. Or perhaps, the electron spreads out somehow and
passes partly through both holes so as to eventually produce the interference result
III. Or perhaps the chance PI that the electron passes through hole 1 has not been
determined correctly inasmuch as closing hole 2 might have influenced the motion
near hole 1. Many such classical mechanisms have been tried to explain the result
III, but none of them has in the end proved successful. In particular, in the case
when light photons are used, (in which case the same law III applies) the two inter-
fering paths 1 and 2 can be made to be many centimeters apart (in space) so that
the two alternative trajectories must almost certainly be independent. That the
actual situation is more profound than might at first be supposed is shown by the
following experiment.
We have concluded on logical grounds that since P 5d Pl + P2, it is not true

that the electron passes through hole 1 or hole 2. But it is easy to design an ex-

periment to test our conclusion directly. One has merely to have a source of light
behind the holes and watch to see through which hole the electron passes. For elec-
trons scatter light, so that if light is scattered behind hole 1 we may conclude that
an electron passed through hole 1 and if it is scattered in the neighborhood of hole 2
the electron has passed through hole 2.

The result of this experiment is to show unequivocally that the electron does
pass through either hole 1 or hole 2! That is, for every electron which arrives at
the screen C (assuming the light was strong enough that we do not miss seeing it)
light is scattered either behind hole 1 or behind hole 2, and never (if the source S
is very weak) at both places. (A more delicate experiment could even show that
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the charge passing through the holes passes either through one or the other, and is
in all cases the complete charge of one electron and not a fraction of it.)

It now appears that we have come to a paradox. For suppose that we combine
both experiments. We watch to see through which hole the electron passes and at
the same time measure the chance that the electron arrives at X. Then for each
electron which arrives at X we can say experimentally whether it came through
hole 1 or hole 2. First we may verify that P1 is given by curve (b). Because if we
select of the electrons which arrive at X only those which appear to come through
hole 1 (by scattering light there) we find they are indeed distributed as in curve (b).
(This result is obtained whether hole 2 is open or closed, so we have verified that
there is no subtle influence of closing 2 on the motion near hole 1.) If we select the
ones scattering light at 2 we get P2 of figure (c). But now each electron appears at
either 1 or 2 so if we take both together we must get the distribution P = P1 + P2
illustrated in figure (d). And experimentally we do! Somehow now the distribution
does not show the interference effects III of curve (a)!

What has been changed? When we watch the electrons to see through which hole
they pass we obtain the result P = P1 + P2. When we do not watch we get a dif-
ferent result P = 01 + 02 1 # P1 + P2.

Just by watching the electrons we have changed the chance that they arrive
at X. How is this possible? The answer is that to watch them we used light and the
light in collision with the electron may be expected to alter its motion or more
exactly to alter its chance of arrival at X.
On the other hand, can we not use weaker light and thus expect a weaker effect?

A negligible disturbance certainly cannot be presumed to produce the finite change
in distribution from (a) to (d). But weak light does not mean a weaker disturbance.
Light comes in photons of energy hv where v is the frequency, or of momentum
h/X where X is the wave length. Weakening the light just means using fewer photons
so that we may miss seeing an electron. But when we do see one it means a com-
plete photon was scattered and a finite momentum of order h/X is given to the
electron. [Those that we miss seeing are distributed according to the interference
law (a), while those we do see and which therefore have scattered a photon ar-
rive at X with the probability P = PI + P2 in (d). The net distribution in this
case is therefore the weighted mean of (a) and (d). In strong light when nearly all
electrons scatter light it is nearly (d), and in very weak light, when very few scatter
it becomes more like (a)].

It might still be suggested that since the momentum carried by the light is h/X,
weaker effects could be produced by using light of longer wave length X. But there
is a limit to this. If light of too long a wave length is used, we will not be able to
tell whether it was scattered from behind hole 1 or hole 2. For the source of light
of wave length X cannot be located in space with precision greater than that of
order X.
We thus see that any physical agency designed to determine through which hole

the electron passes, must produce, lest we have a paradox, enough disturbance to
alter the distribution from (a) to (d).

It was first noticed by Heisenberg, and stated in his uncertainty principle, that
the consistency of the then new mechanics required a limitation to the subtlety to
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which experiments could be performed.' In our case it says that an attempt to
design apparatus to determine through what hole the electron passed and delicate
enough so as not to deflect the electron sufficiently to destroy the interference pat-
tern, must fail. It is clear that the consistency of quantum mechanics requires that
it must be a general statement involving all the agencies of the physical world
which might be used to determine through which hole an electron passes. The
world cannot be half quantum mechanical half classical. No exception to the un-
certainty principle has been discovered.
We are still left with the question, "Do the electrons have to go through hole 1

or hole 2 or don't they?" To avoid the logical inconsistencies into which it is so
easy to stumble, the physicist takes the following view. When no attempt is made
to determine through which hole the electron passes one cannot say it must pass
through one hole or the other. Only in a situation where an apparatus is operating
to determine which hole the electron goes through is it permissible to say that it
passes through one or the other. When you watch you find that it goes either
through one or the other hole, but if you are not looking you cannot say that it
either goes one way or the other! Such is the logical tightrope on which Nature
demands that we walk if we wish to describe her.
To summarize then: The probability of an event (in an ideal experiment where

there are no uncertain external disturbances) is the absolute square of a complex
quantity called the probability amplitude. When the event can occur in several
alternative ways the probability amplitude is the sum of the probability amplitude
for each alternative considered separately.

If an experiment capable of determining which alternative is actually taken is
performed the interference is lost and the probability becomes the sum of the prob-
ability for each alternative.

The main point of this paper has been to discuss this relation of probability
amplitude to the calculation of probabilities. Of course, the complete physical the-
ory must also supply the exact formulae for calculating the probability amplitudes
for a given situation. The amplitude is usually calculated by solving a kind of
wave equation. For particles of low velocity it is called the Schrodinger equation.

I The uncertainty principle was first stated for the special case of position and momentum meas-
urements. It said that measurement of a momentum to accuracy Ap implies disturbances sufficient
to create an uncertainty in position Aq at least of the order of h/Ap. That we would be led to a
paradox if this were not true can be seen from our experiment in the following way. Instead of de-
termining through which hole the electron passes by using light we may notice that the deflection
suffered by the electron in passing from the source to X through hole 1 differs from that suffered
in passing through hole 2. Hence the momentum (in the vertical direction in figure 1) given to the
electron by the screen is different in the two cases. Call the difference 5p. Hence the hole through
which the electron passes can be determined by measuring in each case the recoil momentum
given to the screen. This can be done by setting screen B free of its supports and measuring its
vertical velocity before and after the passage of each electron to determine the change in momen-
tum. The probability distribution must now be (d) instead of the interference pattern (a). This
comes about because by freeing the screen from its supports we can no longer be sure of its exact
vertical location. In fact, for the passage of each electron the vertical position may differ, by
amounts we shall call Aq. Hence the distribution of electrons is that of (a), but smeared out in X
by an amount Aq. A simple calculation shows that the separation between maxima and minima in
the pattern (a) is just h/28p. We must measure the screen momentum with an error Ap which is
less than the difference Bp if we are to determine the hole through which the electron passes. The
uncertainty principle assures us that the vertical uncertainty Aq in the screen position must ex-
ceed h/Ap and hence exceed h/25p so that the maxima and minima of the diffraction pattern (a)
are completely smeared out and the resulting distribution is that of (d).
Many interesting examples of this kind have been analyzed, particularly by N. Bohr.
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A more accurate equation valid for electrons of velocity arbitrarily close to the
velocity of light is the Dirac Equation. In this case the probability amplitude is a
kind of hypercomplex number. It is a problem of the future to discover the exact
manner of computing the amplitudes for processes involving the apparently more
complicated particles, namely, neutrons, protons, mesons, etc.

The situation for slowly tnoving particles, which are usually handled by solving
the Schrodinger equation, may also be stated in another way. If a particle is re-
leased at a certain point X1 at a time t1 we may wish to calculate its amplitude of
arrival at some other point X2 at a later time t2. We can consider that the particle
can take any path X(t) going between the given end points [X(t1) = X1, X(t2) =
X2]. Then, the total amplitude for arrival can be considered as the sum over all
the possible trajectories of an amplitude 4' for each trajectory. It only remains to
give the probability amplitude for a given trajectory to state completely the laws
of quantum mechanics in the nonrelativistic (low velocity) limit. The amplitudes
for the trajectories are complex numbers (all of the same absolute square magni-
tude) which simply differ from one another in phase. The phase for a given tra-

jectory X(t) is simply the action S = fLdt (the time integral of the Lagrangian)
calculated classically for this trajectory and measured in units of Planck's constant
of action h [that is, 4' = constant exp (2xriS/h)]. It can be demonstrated2 that
this formulation leads to the Schr6dinger equation. Its relation to classical me-
chanics is interesting. Quantum mechanically we say all trajectories contribute to
an effect, each with amplitude exp (2iriS/h); while classically we say only one
trajectory is important, namely that which makes the quantity S an extremum.
The classical theory arises from the quantum theory in the limit that the action S
is large compared to Planck's constant h. For (by the method of stationary phase)
the contributions of most trajectories will cancel out by interference because a
neighboring trajectory may contribute with a very different phase. Only those
trajectories near the one that makes S a maximum or minimum will be important
for they all contribute with nearly the same phase.
When the energy is definite and the particles travel in empty space, as in our

experiment, the result can be stated in a still simpler manner. For example 0, is
(except for slowly varying factors involving the width of the slits and cosines of
the angles of deflection) proportional to exp i(di/X) where di is the total distance
from S to hole 1 plus that from hole 1 to X. The quantity X, the wave length of the
waves, is related to the momentum p of the electron by deBroglie's formula
p = h/X. Likewise 42 has the phase d2/X. It is for those points X for which di and d2
differ by an odd number of half-wave lengths that we have destructive interference
and a minimum in the probability distribution.

For objects of ordinary size the momentum p is so large that the wave length X
is so short that the maxima and minima of the interference pattern occur so close
together as to escape ordinary observation. The relative phases are so large and
uncertain that the interference terms are not noticed and ordinary probability
laws such as P = P1 + P2 apply with sufficient accuracy.

2 The formulation is discussed in detail in R. P. FEYNMLAN "Spacetime approach to nonrela-
tivistic quantum mechanics," Reviews of Modern Physics, Vol. 20 (1948), pp. 367-387.
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The amplitude 4' can be worked out as the product of two factors 4) = Os,S 4)x
where Os, is the amplitude to go from S to the hole at 1 and 4)x is the amplitude to
go from the hole at 1 to X. (If the hole is not small we shall have to consider each
differential of area of the hole, calculate the amplitude of going from S to this area
times the amplitude of going from this area to X and sum these amplitudes over the
total area of the hole. Each differential area constitutes an alternative.) The com-
position of probability amplitudes bears some formal analogy to Laplace's rules
for probability. For events occurring in succession we multiply amplitudes, while
when various alternatives are available the amplitude is the sum of those corre-
sponding to each alternative.

Finally, it is interesting to see how formula P = 1 41 + 42 12 becomes altered
under the influence of light shining on the holes, so that it assumes the classical
form P = P1 + P2. The light by interacting with the electron going through hole 1
alters the phase with which the electron arrives at X by an amount say 01, so that
the probability amplitude of arrival through hole 1 is now ,leiGl. The value of 01
cannot be exactly determined in a given scattering since the precise phase of the
light is lost when the scattered light is absorbed in whatever instrument (eye, pho-
tocell, etc.) is used to determine whether the light comes from 1 or 2. Exactly how
this comes about has been analyzed in many precise situations by von Neumann.
Thus the probability of a particular electron arriving at X is O)eo + 4)2ei0 12
But each scattering corresponds to a different, unknown and random value of the
phase shifts 01 and 02. We must then average 4lei' + 4)2ei2 12 over all phases
01, 02 obtaining, as is well known, | 41 II + 12142, which is just Pi + P2, in agreement
with the experiment.

It is very interesting that in the quantum mechanics the amplitudes 4 are solu-
tions of a completely deterministic equation. Knowledge of 4 at I = 0 implies its
knowledge at all subsequent times. The interpretation of | 142 as the probability
of an event is an indeterministic interpretation. It implies that the result of an
experiment is not exactly predictable. It is very remarkable that this interpreta-
tion does not lead to any inconsistencies. That it is true has been amply demon-
strated by analyses of many particular situations by Heisenberg, Bohr, Born, von
Neumann and many other physicists. In spite of all these analyses the fact that no
inconsistency can arise is not thoroughly obvious. For this reason quantum me-
chanics appears as a difficult and somewhat mysterious subject to a beginner. The
mystery gradually decreases as more examples are tried out, but one never quite
loses the feeling that there is something peculiar about the subject.

I believe there are a few interpretational problems on which work may still be
done. They are very difficult to state until they are completely worked out. One
is to show that the probability interpretation of 4 is the only consistent interpreta-
tion of this quantity. We and our measuring instruments are part of Nature and
so are in principle described by an amplitude function satisfying a deterministic
equation. Why can we only predict the probability that a given experiment will
lead to a definite result? From whence does the uncertainty arise? Almost cer-
tainly it arises from the need to amplify the effects of single atomic events to such
a level that they may be readily observed by large systems. The details of this have
only been analyzed on the assumption that 14) 2 is a probability and the consist-
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ency of this assumption has been shown. It would be an interesting problem to
show that no other consistent interpretation can be made.

Other problems which may be further analyzed are those dealing with the theory
of knowledge. For example, there seems to be a lack of symmetry in time in our
knowledge. Our knowledge of the past is qualitatively different than that of the
future. In what way is only the probability of a future event accessible to us while
the certainty of a past event can often apparently be asserted? These matters
again have been analyzed to a great extent. I believe however a little more can be
said to clarify the situation. Obviously we are again involved in the consequences
of the large size of ourselves and of our measuring equipment. The usual separation
of observer and observed which is now needed in analyzing measurements in quan-
tum mechanics should not really be necessary, or at least should be even more
thoroughly analyzed. What seems to be needed is the statistical mechanics of am-
plifying apparatus.

The analyses of such problems are of course in the nature of philosophical ques-
tions. They are not necessary for the further development of physics. We know we
have a consistent interpretation of 4 and almost without doubt, the only consistent
one. The problem of today seems to be the discovery of the laws governing the be-
havior of 4 for phenomena involving nuclei and mesons. The interpretation of 0
is interesting. But the much more intriguing question is: What new modifications
of our thinking will be required to permit us to analyze phenomena occurring with-
in nuclear dimensions?


