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On the Galilean covariance of the d’Alembert equation for acoustic phenomena
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1. Introduction

Until now, the question of the covariance of the
d’ Alembert equation for acoustic waves has been approached
in a wrong way, as will become clear in this paper.
Commonly, the subject is addressed in texts on Special
Relativity, motivated by the well-known fact that the
components of the electric and magnetic vector fields of light
satisfy the same d’Alembert equation. As Maxwell’s electro-
magnetic theory is covariant by the Lorentz transformation
group [1,2], one may be led to think that the same applies to
the d’ Alembert equation when it describes any other physical
phenomenon. This is indeed the case so far light phenomena
are involved. However, acoustic phenomena are typically
non-relativistic. Thus one can wonder if there is any contra-
diction to have both relativistic and non-relativistic physical
phenomena described by the same differential equation. How
the same equation can sometimes be covariant according to
the Lorentz transformations and at other times by the Galileo
transformations. It is important to stress from the beginning
that there is no contradiction in the fact that the d’ Alembertian
equation, applied to acoustic phenomena, is covariant by the
transformations of the Galileo group. The physical reason for
this remarkable difference between the relativistic and the
non-relativistic limits is, ultimately, the constancy of light
velocity, as proposed by Einstein. This will become evident in
the deduction that follows. Disregarding this reasoning, this
specific issue was recently treated by Berisha and Klinaku [3].
The authors actually claimed to give an answer to the question
“Why does the acoustic wave equation turn out to be non-
invariant to Galilean transformations?,” by sustaining that
Galileo’s covariance of this equation, in the case of acoustic
waves, can be accomplished only by defining a new Galilean
transformation where time is no more absolute. This strategy
is not necessary, as will be shown in Sect. 2 and in the sequel.

In general, it is widely known that both the speed of sound
and light do not depend on the state of motion of the source.
However, unlike light, the speed of sound depends on the
movement of the observer. Einstein’s hypotheses that the
speed of light in vacuum is an universal constante and that the
invariance of physical laws, with respect to transformations
between inertial reference frames, condition the covariance of
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d’Alembert’s equation for light waves to Lorentz trans-
formations. Meanwhile, so far acoustic phenomena are
considered, the covariance of the d’Alembert equation must
be accomplished by the usual Galilean transformations, as it
will be demonstrated below.

The Galilean transformation [4] is a mathematical
relationship used in Classical Physics to describe the trans-
formation between the coordinates of an event as observed
from two different inertial reference frames. It stems from the
so-called Principle of Relativity, first expressed by the Italian
scientist Galileo Galilei, during the 17th Century [5]. In its
original conception, it is applicable when the relative velocity
between the two frames is much smaller than the speed of
light in vacuum, making it appropriate for describing non-
relativistic scenarios [6].

Without lost of generality, one can consider the Galilean
transformation equations for coordinates, considering the
relative movement of the reference frames just along the x
axis, so that:

X =x-Vt
{ (D

/=t
where (x,t) and (x/, ¢') are the spatial and temporal coordinates
according to the reference frames S and §', respectively, and V
is the speed of S relative to S.

The Galilean transformation describes how the spatial and
temporal coordinates of an event measured in one reference
frame can be related to those measured in the other reference
frame. It forms the basis for the Classical Newtonian
Mechanics when dealing with non-relativistic speeds, such
as those encountered in everyday life situations. However,
when dealing with extremely high speeds like those of
elementary particles in accelerators, the Lorentz transforma-
tion, derived from Einstein’s Theory of Special Relativity
which defines a four dimensional spacetime, becomes
necessary to accurately describe all the changes between
two different inertial frames.

Berisha and Klinaku [3] propose a modified version of the
Galilean transformation, which they called the transformed
Galilean transformation (TGT), expressed by the ad hoc
relations

X =x—-Vt
{ ()

! =t—Vx/*
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where ¢ here is sound velocity in the inertial reference frame
S, denoted by u in the aforementioned paper. After deducing
the TGT, they use it to demonstrate the invariance of the wave
equation for acoustic phenomena.

In this paper, it will be shown that to demonstrate this
invariance we don’t need to use the TGT.

2. Galilean covariance of the d’Alembert equation in one
dimension
Regarding a coordinate system S, associated with a
stationary reference frame in a non-dispersive medium, the
wave equation governing the acoustic phenomena is given by
[7-91
2 82
——Y(x,t) = — ¥(x,t A3
c? or? 0x? (1) )

where ¢ represents the propagation speed of sound, which, in
this case, solely depends on the properties of the medium.
Here, (x,7) are the spatial and temporal coordinates in
reference to S, and ¥(x, ) is a scalar field, such as pressure
or density of the medium. Notably, its value at a given instant
and point in the medium remains independent of the reference
frame.

Consequently, if (x',7) represents the space-time coor-
dinates concerning a system S associated with a non-
stationary reference frame, yet with axes parallel to S, the
following equation must hold, since ¥ is a scalar,

U(x, 1) = ¥(X,1) “)

In fact, if the frame associated with S’ moves relative to
the stationary frame from ¢ = 0, with a velocity V, in the same
direction and sense (+x) as the propagation velocity (c) of a
sound pulse (Fig. 1), then

Y(x, 1) = flx —ct)

Furthermore, considering that the clocks in S and S” were
synchronized at t = ' = 0, and remain synchronized such that
at any later instant ¢ = ¢, the coordinates in S and § are
related by

x=x4+Vt=x+V 5)

According to the hypothesis of invariance of time
intervals, the relationship

Fig.1 The propagation of a sound pulse is observed
from two different reference frames. Here, ¢ represents
the velocity of the pulse relative to the system S, and V
is the velocity of S relative to S.
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fx—ct) = f&' + Vi —ct') = flx' — (c = V)I']
— f(x/ _ C/ t/)
implies the Eq. (1), where ¢’ = (¢ — V) is the speed of sound
relative to the system 5, i.e., the speed of sound with respect
to a reference frame that moves in a medium, in addition to
the properties of the medium, also depends on the speed of the
reference frame.

Regarding the wave equation (3), from the relationships
between the spatial and temporal derivatives in the S and §'
systems, one should write
1

—_—
d  ox 0 82_82

= = -
ox’ ox’ ox aw? ox?
1 1%
—_— —_—
Jat 9d dx 0

o o o o ox
2 82 92 , &
— = 42V— 4+ VP
arr a2 9tdx ox2

As a result:
3 92
N
a2 L) = g
3 9?
/N
W'I’(x,t) = @llf(x, t) +
+2V > U(x, 1) + V? v W(x, 1)
—Y(x, —Y(x,
otdx oax2

Taking into account that

9? 2
_ 7
@W(x,t)—cf
82
Pt = — 7
Pl
2

d 1/
@W(JQ t) = f

Ux,t)=f(x—ct) =

finally yielding

9’ 92

— /,l/ — 2—2V V2 " _ /2_11/ /,l‘/

8[/2 ()C ) ( u,_zi_.z )f ¢ 8)6/2 ('x )
(c=V)

being ¢’ = ¢ — V.

Thus, the sound wave propagation equation has the same
form in any inertial reference frame. Alternatively, this
property is expressed by saying that the d’ Alembert equation
for acoustic waves is covariant with respect to the Galilean
transformations.

2 82
— —v(X, )= —vX., 1)
C/Z at/Z ’ ax/Z ’

3. Phase invariance and Doppler effect

In the case of a monochromatic sound wave of wave-
length A =2m/k and frequency w = 2mv = ke, described
by

2
Y(x,t) = cos T (x — ct) = cos(kx — wt)

the validity of the expression f(x — ct) = f(x' — ¢’t') implies
that the phase of the wave function is invariant [10] with
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respect to changes in space-time coordinates (x,7) e (x',¢) in
the S and S’ systems. So, according to Eq. (5),

Kx — ot =kx — ot =kxX' +kVY — ot =k’ — (0 — kV)Y
one gets
K=k = A=2

/ V
o =w—kV=wll-——
c

as it should be. Remember that the wave-length, by definition,
is the spatial distance between two successive crests of a
wave, which is invariant under the original Galilean trans-
formation. In this way, the relation between the wave
propagation speed, wave-length and frequency is also invar-
iant. Indeed,

/ 1./ V
=Av=>0C-V)=Av|1—— = c=Adv
c

The dependence of the frequency on the reference frame,
called the Doppler Effect™ [7,8], is a phenomenon character-
istic of the propagation of any type of wave, be it acoustic or
electromagnetic. For the latter, ¢ is a universal constant, and
in the case of the source or the observer approaching with
velocity V, the wave-length changes like any other distance
along the direction of motion, ' = A/(1 — V/c¢)/(1 + V/¢),
and the frequency goes to v/ = v/(1 + V/c)/(1 — V/c), such
that the relation ¢ = Av is preserved in any inertial frame.
Thus, no matter the nature of the phenomenon described by
the d’Alembert equation, the invariance of the relation ¢’ =
AV = Av = ¢ is always verified.

In the case of sound waves, this dependence is a direct
consequence of the relative motion between the observer and
the sound source.

For light waves in a vacuum, even though the speed of
light does not depend on the relative motion between the
observer and the light source, the effect manifests itself due to
the relativity of time intervals in different reference frames.

*In this case, for the source at rest in S, and an observer moving in
the same direction as the wave.

4. Discussion

It was straightforwardly demonstrated that, in order to
show the invariance of the wave equation for acoustic
phenomena, there is no need to modify the Galilean trans-
formation, contrary to what is sustained in Berisha and
Klinaku work [3]. This finding indicates that, under the
classical Galilean transformation, the form of the d’Alembert
equation remains unaltered in different inertial reference
frames moving at constant velocities relative to each other,
provided that those velocities are much smaller than the speed
of light, i.e., in non-relativistic scenarios.
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