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ABSTRACT

The possibility of constraining fractal space dimensionality from astrophysics and other areas is briefly reviewed.
Assuming such dimensionality to be 3 + ε, a bound for ε can be imposed from data obtained by far-infrared
absolute spectrophotometer instrument aboard Cosmic Background Explorer satellite. The available data for
the cosmic microwave background radiation (CMBR) spectrum are fitted by Planck’s radiation distribution
generalized to noninteger space dimensionality. The present analysis shows that the shape of the CMBR
spectrum, which does not depend on the absolute normalization, is correctly described from this distribution
provided the absolute temperature is equal to (2.726 ± 0.003) × 10−2 K and ε = −(0.957 ± 0.006) × 10−5.
This result for the last parameter is shown to be similar to what was found on a very different spatial scale
based on a quantum phenomenon. The value of |ε| is interpreted as an upper limit for how much space
dimensionality could have deviated from three. In other words, this is the maximum fluctuation space dimensionality
should have undertaken in a very large spatial and temporal scale compared to that of the decoupling era.
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1. INTRODUCTION

A modern scientific approach to the problem of dimensional-
ity was introduced by Ehrenfest (1917, 1920), who formulated
the question: “How does it become manifest in the fundamental
laws of physics that space has three dimensions?” The first in-
vestigations concerning general relativity and a heuristic model
of a pulsating universe were made by Tangherlini (1963, 1968),
who tried to impose constraints to integer space dimensionality
by searching for bound stable states of the universe. Following
the general idea of Kaluza–Klein, there are presently several
higher-dimensional theories which agree with all observations,
and the two main versions of n-dimensional cosmology are re-
viewed by Randall (2002) and Wesson (2003). A modern and
comprehensive survey of dimensionality can be found in Petkov
(2007).

Ehrenfest’s question can obviously be reversed and we can
try to answer the following: “How do the fundamental laws of
physics entail space dimensionality?” (Caruso & Moreira 1987,
1997). In their 1997 paper, space dimensionality is taken as
an unknown quantity or can be admitted to have a noninteger
value d = 3 + ε, with ε being a parameter to be experimentally
determined. Since the introduction of the concept of fractal
dimension by Mandelbrot (1977), this became an interesting
possibility to be explored.

2. THE FIRST PREDICTIONS

Following the general aforementioned idea, with just one
exception, several authors have determined limits for |ε|, as
shown in Table 1, covering a very large length scale from micro
to macro cosmos.

Except from the two almost similar constraints concerning
the cosmic background radiation (CBR), the upper limits for |ε|
vary 4 orders of magnitude for a typical length scale going from
10−8 (atomic scale) to 1020 m.
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So far as astronomical arguments are used, we see from
Table 1 that different data from the motion of Mercury give
results of the same order of magnitude, namely, |ε| � 10−9.
A quick inspection of this table shows that the two upper
limits on |ε| which follows from an analysis of the CBR are
not so stringent as others. The result |ε| < 0.02 (Grassi et al.
1986) was obtained by comparing the available data at that time
for the Relic Radiation against a laboratory blackbody source.
The limit |ε| � 10−3 (Torres & Herrejón 1989) was achieved
estimating the CBR experimental errors for both the radiance
and the spectrum to be of the order of 10% (Woody & Richards
1981; Smoot et al. 1983; Meyer & Jura 1984; Uson & Wilkinson
1984). An improvement should be pursued since it was shown by
Mather et al. (1990) that the deviation of the shape of the cosmic
microwave background radiation (CMBR) spectrum from that
of a blackbody can be determined with an accuracy much greater
than the measurement of the absolute temperature of the sky.
Therefore, we should investigate how the more precise 1996
Cosmic Background Explorer (COBE) satellite results (Fixsen
et al. 1996) can improve the aforementioned limits.

3. THE FIT OF COBE DATA

The far-infrared absolute spectrophotometer (FIRAS) on
COBE satellite has been designed to measure extremely small
deviations of the CMBR from a blackbody spectrum. However,
as all previous experimental results on the frequency spectrum
of the Relic Radiation, the COBE data do not provide us with
absolute measurements.

This experimental restriction is a consequence of the fact
that, at the present moment, the anisotropy of the CMBR is
not large enough to provide us with a clear choice of some
particular dark region of the sky which could help us with
the calibration (Richards 1982). However, there is a hope that,
at least for the present generation of spectral measurement
apparatus, the Wilkinson Microwave Anisotropy Probe (WMAP)
data, which provide an accurate enough measurement of the
dipole spectrum, could lead to a recalibration of the absolute
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Table 1
First Predictions for Deviations |ε| From the Integer Value 3 for Space Dimensionality

Reference Measured Quantity |ε|
Zeilinger & Svozil (1985) Anomalous (g − 2) electron factor (5.3 ± 2.5) × 10−7

Jarlskog & Ynduráin (1986) Periastron of Mercury and <1.5 × 10−9

binary pulsar PSR 1913 + 16
Grassi et al. (1986) 3 K radiation frequency spectrum <0.02
Schäfer & Müller (1986) Lamb shift in hydrogen <4 × 10−11

Electron Compton wavelength �5 × 10−7

Anomalous magnetic moment of the muon <10−5

Müller & Schäfer (1986) Perihelion of Mercury ≈10−9

Torres & Herrejón (1989) 3 K radiation frequency spectrum �10−3

measurement of the FIRAS COBE using this data (D. J. Fixsen
2008, private communication).

Nevertheless, they led to the conclusion that the CMBR agrees
with a blackbody spectrum to a high accuracy. The published
results (Fixsen et al. 1996) are obtained by a comparison against
an almost ideal (emissivity ≈ 0.98) blackbody source placed
inside the satellite and calibrated to a second external blackbody
(emissivity ≈ 0.99997). Unfortunately, there is no way to
measure fluxes independently. From the theoretical point of
view, this comparison is accomplished by assuming the Planck
distribution and presupposing space to be three dimensional.

For a d-dimensional space, Planck’s radiation law for the
spectral density energy uν , as a function of temperature T and
frequency ν, generalizes to (Caruso & Oguri 2006)

uν = 2(d − 1)πd/2

Γ(d/2)

(ν

c

)d h

ehν/kT − 1
. (1)

For the moment, let us attribute any deviation from the ideal
three-dimensional blackbody radiation law to be due to the
hypothesis that the number of dimension is actually d = 3 + ε
instead of just 3. There is still another assumption underlying
our approach: that photons of the 3 K background retain the
dimensional information for the place and time of their creation,
so it can be compared to here and now.

Thus, the data from Fixsen et al. (1996), complemented with
those given at the site of COBE Collaboration (2008), are fitted,
using the MINUIT package running the CERN ROOT program,
not directly by Equation (1) but by a function of three parameters
(N, T , ε)

uν = N
νd

ehν/kT − 1
(2)

since what is relevant to our analysis is the shape of the spectrum.
The result of the fit is shown in Figure 1.

The values which emerge from the fit are
⎧⎨
⎩

ε = −(0.957 ± 0.006) × 10−5

T = 2.726 ± 0.003 × 10−2 K.

(3)

Note that the FIRAS experimental result for the absolute
temperature of CMBR, 2.728±0.004 K (95% confidence level),
found in Fixsen et al. (1996), is dominated by systematic errors.
It is important to stress that in our fit we have one more parameter
besides a slightly different normalization, which, in practice, did
not change the quality of the fit as can be shown by comparing
our formal χ2/dof = 1.124 to the 1.15 value found in the
COBE analysis. Actually, the statistical error to be compared
to our result for the absolute temperature is 0.00001, given in

Figure 1. Fit of the intensity of the CMBR spectrum as a function of the inverse
of wavelength by Planck’s radiation law generalized to d dimensions.

Table 2 of Fixsen et al. (1996). On the other hand, the FIRAS-
measured CMBR residuals strongly support the quality of their
data and their fit. Thus, it follows that our result is statistically
significant as well.

Clearly, the assumption that all deviations from Planck’s
radiation law might be due to its dependence on dimensionality
gives an overestimated value for ε. Other sources for these
deviations indeed exist and were analyzed (Fixsen et al. 1996),
such as Bose–Einstein and Compton distortions. In both cases,
the upper limits found for the involved parameters indicate
a small effect. Based on these results, Wright et al. (1994)
estimated that from the Bose–Einstein period (105 < z <
3×106) the ratio between the amount of energy converted from
anything but the cosmic background to that of the background
itself is �6.4 × 10−5; for the energy released after that period
but before the decoupling era (z � 103) the limit is quite similar,
�6.4 × 10−5. Therefore, the value obtained for ε should also
be seen as an upper limit, namely |ε| < 0.957 × 10−5, related
to the epoch when the universe became entirely transparent: the
decoupling era.

4. DISCUSSIONS

Strictly speaking, since absolute measurements for the fluxes
are not yet available, the physical meaning of the parameter ε
should be reinterpreted. Indeed, inasmuch as the experimental
device compares the background radiation to that of a local
blackbody with controlled temperature, at least in principle,
one can figure out that the value of ε could be locally (in this
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case, where the reference blackbody is placed) different from
the fractal dimensions of space on the horizon scales. In this
case, ε should be interpreted as a difference between these two
fractal dimensions at two far away spatial scales, as did by
Grassi et al. (1986). Alternatively, one can suppose that local
space is just three dimensional and, in this case, we are putting
a limit on how much space dimensionality could be different
from three in the farthest corner of the universe one can look
into.

The overestimated value we get for ε, Equation (3), is 2
orders of magnitude less than the more accurate upper limit
value estimated by Torres & Herrejón (1989) with small errors.
Another important difference found here, in respect to this last
paper and to that of Grassi et al. (1986), is that we are able to
fix also the sign of the ε parameter, showing that it is negative.
To the best of our knowledge, this is the first time that the sign
of ε can be determined by analyzing experimental results at the
astrophysical or cosmological scale. Up to now, the strongest
constraint comes from microphysics. Indeed, Zeilinger & Svozil
(1985) were able to determine not only the value of |ε| = |d−3|
but the sign of this parameter too, from quantum field theory,
getting ε = −(5.3 ± 2.5) × 10−7, which is approximately 1
order of magnitude less than our upper limit for |ε|. Their result
seems to resolve the discrepancies between the theoretical and
experimental values of the anomalous magnetic moment of the
electron (see also Svozil & Zeilinger 1986). Another evidence
in favor of arbitrarily small nonzero |ε| comes from the study
of Ising gauge theories in noninteger dimensions (Bhanot &
Salvador 1986).

In the concluding remarks of their paper, Zeilinger & Svozil
(1985) wrote: “it is certainly a challenge for future research to
investigate whether or not the deviation of the dimension of
spacetime from four can be made more statistically significant
than the present work suggests. Furthermore, the question of
possible evidence for such a small deviation in other areas
of Physics deserves attention.” If we assume time to be one

dimensional, as usually done, the main result of the present
paper can be seen as an answer to both challenges.

REFERENCES

Bhanot, G., & Salvador, R. 1986, Phys. Lett., 167B, 343
Caruso, F., & Moreira, R. 1987, Fundam. Sci., 8, 73
Caruso, F., & Moreira, R. 1997, in Essays on Interdisciplinary Topics in

Natural Sciences Memorabilia: Jacques A. Danon, ed. R. B. Scorzelli,
I. S. Azevedo, & E. Baggio Saitovitch (Gif-sur-Yvette/Singapore: Editions
Frontières), 73

Caruso, F., & Oguri, V. 2006, Modern Physics (Rio de Janeiro: Elsevier) (in
Portuguese)

COBE Collaboration 2008, (Washington, DC: NASA), http://lambda.gsfc.nasa.
gov/product/cobe/firas_monopole_get.cfm

Ehrenfest, P. 1917, Proc. Amsterdam Acad, 20, 200 (1959, Paul Ehrenfest—
Collected Scientific Papers, ed. M. J. Klein (Amsterdam: North-Holland),
400 (reprinted))

Ehrenfest, P. 1920, Ann. Phys., 61, 440
Fixsen, D. J., et al. 1996, ApJ, 473, 576
Grassi, A., Sironi, G., & Strini, G. 1986, Astrophys. Space Sci., 124, 203
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