STATISTICAL INTERPRETATION OF
QUANTUM MECHANICS

[First published in Science, Vol. 122, No. 3172, pp. 675-679 (1955). This
article is the English translation of the lecture Professor Born gave in German
when he was awarded the Nobel Prize for Physics in 1954, a prize which he
shared with W. BoTHE.]

THE published work for which the honour of the Nobel prize
for the year 1954 has been accorded to me does not contain
the discovery of a new phenomenon of nature but, rather, the
foundations of a new way of thinking about the phenomena of
nature. This way of thinking has permeated experimental and
theoretical physics to such an extent that it seems scarcely possible
to say anything more about it that has not often been said already.
Yet there are some special aspects that I should like to discuss.
The first point is this: The work of the Géttingen school, of which
I was at that time the director, during the years 1926 and 1927,
contributed to the solution of an intellectual crisis into which our
science had fallen through Prawck’s discovery of the quantum of
action in the year 1goo. To-day physics is in a similar crisis—I do
not refer to its implication in politics and economics consequent on
the mastery of a new and terrible force of nature, but I am thinking
of the logical and epistemological problems posed by nuclear physics.
Perhaps it is a good thing to remind oneself at such a time of what
happened earlier in a similar situation, especially since these events
are not without a certain element of drama. In the second place,
when I say that physicists had accepted the way of thinking deve-
loped by us at that time, I am not quite correct. There are a few
most noteworthy exceptions—namely, among those very workers
who have contributed most to the building up of quantum theory.
Pranck himself belonged to the sceptics until his death. Emstem,
DE BrogLiE, and ScHrRODINGER have not ceased to emphasize the
unsatisfactory features of quantum mechanics, and to demand a
return to the concepts of classical, Newtonian physics, and to
propose ways in which this could be done without contradicting
experimental facts. One cannot leave such weighty views unheard.
NIeLs BoHRr has gone to much trouble to refute the objections. I
have myself pondered on them and believe I can contribute some-
thing to the clarification of the situation. We are concerned with
the borderland between physics and philosophy, and so my physical
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lecture will be partly historically and partly philosophically coloured,
for which I ask indulgence.

First of all, let me relate how quantum mechanics and its
statistical interpretation arose. At the beginning of the 1g20’s
every physicist, I imagine, was convinced that PLaNck’s hypothesis
was correct, according to which the energy in oscillations of definite
frequency v (for example, in light waves) occurs in finite quanta
of size Av. Innumerable experiments could be explained in this
manner and always gave the same value of PLanck’s constant A.
Furthermore, EINSTEIN’s assertion that light quanta carry momen-
tum Avjc (where ¢ is the velocity of light) was well supported by
experiment. This meant a new lease of life for the corpuscular
theory of light for a certain complex of phenomena. For other
processes, the wave theory was appropriate. Physicists accustomed
themselves to this duality and learned to handle it to a certain
extent.

In 1913 NiELs BoHR had solved the riddle of line spectra by using
quantum theory and at the same time had explained, in their
main features, the wonderful stability of atoms, the structure of
their electronic shells, and the periodic system of the elements.
For the sequel the most important assumption of his teaching was
this: an atomic system cannot exist in all mechanically possible
states, which form a continuum, but in a series of discrete ‘stationary’
states; in a transition from one to another the difference in energy
E,, — E, is emitted or absorbed as a light quantum 4v,,,, (according
as E,, is greater or less than E,). This is an interpretation, in
terms of energy, of the fundamental law of spectroscopy discovered
some years previously by W. Rrrz. The situation can be pictured
by writing the energy levels of the stationary states twice over,
horizontally and vertically; a rectangular array results

£ E, Ey
E, 11 12 13 . .
E, 21 22 23

- L ) L S T T T Y

in which positions on the diagonal correspond to the states and off-
diagonal positions correspond to the transitions.

Bour was fully aware that the law thus formulated is in conflict
with mechanics and that, therefore, even the use of the concept of
energy in this context is problematical. He based this bold fusion
of the old with the new on his principle of correspondence. This
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consists in the obvious requirement that ordinary classical mech-
anics must hold to a high degree of approximation in the limit,
when the numbers attached to the stationary states, the quantum
numbers, are very large—that is, far to the right and low down in
the foregoing array—so that the energy changes relatively little
from place to place—that is, practically continuously.

Theoretical physics lived on this idea for the next 10 years.
The problem was that a harmonic oscillator possesses not only
frequency but intensity as well. For each transition in the scheme
there must be a corresponding intensity. How is the latter to be
found by considerations of correspondence? It was a question of
guessing the unknown from a knowledge of a limiting case. Con-
siderable success was achieved by Borr himself, by Kramers, by
SOMMERFELD, by EpsTEIN, and by many others. But the decisive
step was again taken by EiNsTEIN, who, by a new derivation of
Pranck’s radiation formula, made it evident that the classical con-
cept of intensity of emission must be replaced by the statistical idea
of transition probability. To each position in our scheme there
belongs, besides the frequency v,, = (E, ~ E,)/k, a certain
probability for the transition accompanied by emission or absorption
of radiation.

In Gottingen we also took part in the attempts to distill the
unknown mechanics of the atom out of the experimental results.
The logical difficulty became ever more acute. Investigations on
scattering and dispersion of light showed that EINsTEIN’s conception
of transition probability as a measure of the strength of an oscillation
was not adequate, and the idea of an oscillation amplitude asso-
ciated with each transition could not be dispensed with. In this
connection work by LADENBURG [1], KraMERS [2], HESENBERG [3],
Jorpan and I [4] may be mentioned. The art of guessing correct
formulas, which depart from the classical formulas but pass over
into them in the sense of the correspondence principle, was brought
to considerable perfection. A paper of mine, which introduced in
its title the expression ‘quantum mechanics’, probably for the first
time, contains a very involved formula—still valid at the present
time—for the mutual disturbance of atomic systems.

This period was brought to a sudden end by HEIENBERG [5],
who was my assistant at that time. He cut the Gordian knot by a
philosophical principle and replaced guesswork by a mathematical
rule. The principle asserts that concepts and pictures that do not
correspond to physically observable facts should not be used in
theoretical description. When EINSTEIN, in setting up his theory of
relativity, eliminated the concepts of the absolute velocity of a
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body and of the absolute simultaneity of two events at different
places, he was making use of the same principle. HESENBERG
banished the picture of electron orbits with definite radii and periods
of rotation, because these quantities are not observable; he
demanded that the theory should be built up by means of quadratic
arrays of the kind suggested in a preceding paragraph. Instead of
describing the motion by giving a co-ordinate as a function of time
x(t), one ought to determine an array of transition probabilities
Xmn- 1O me the decisive part in his work is the requirement that one

must find a rule whereby from a given array

the array for the square,

(**) 11 (*%ha - - -
(2% g (#%)2n

may be found (or, in general, the multiplication law of such arrays).

By consideration of known examples discovered by guesswork he
found this rule and applied it with success to simple examples such
as the harmonic and anharmonic oscillator. This was in the summer
of 1925. HEISENBERG, suffering from a severe attack of hay fever,
took leave of absence for a course of treatment at the seaside and
handed over his paper to me for publication, if I thought I could
do anything about it.

The significance of the idea was immediately clear to me, and I
sent the manuscript to the ZLeitschrift fiir Physik. HESENBERG’s rule
of multiplication left me no peace, and after a week of intensive
thought and trial, I suddenly remembered an algebraic theory that
I had learned from my teacher, RosaNEs, in Breslau. Such quadratic
arrays are quite familiar to mathematicians and are called matrices,
in association with a definite rule of multiplication. I applied this
rule to HESENBERG’S quantum condition and found that it agreed
for the diagonal elements. It was easy to guess what the remaining
elements must be, namely, null; and immediately there stood before
me the strange formula

pq — qp = hfam.
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This meant that co-ordinates ¢ and momenta p are not to be repre-
sented by the values of numbers but by symbols whose product
depends on the order of multiplication—which do not ‘commute’,
as we say.

My excitement over this result was like that of the mariner who,
after long voyaging, sees the desired land from afar, and my only
regret was that HEISENBERG was not with me. I was convinced
from the first that we had stumbled on the truth. Yet again a large
part was only guesswork, in particular the vanishing of the non-
diagonal elements in the foregoing expression. For this problem I
secured the collaboration of my pupil PascuaL Jorpan, and in a
few days we succeeded in showing that I had guessed correctly.
The joint paper by Jorpan and myself [6] contains the most
important principles of quantum mechanics, including its extension
to electrodynamics.

There followed a hectic period of collaboration among the three
of us, rendered difficult by HEriseNBErRG’s absence. There was a
lively interchange of letters, my contribution to which unfortunately
went amiss in the political disorders. The result was a three-man
paper [7], which brought the formal side of the investigation to a
certain degree of completeness. Before this paper appeared, the
first dramatic surprise occurred: Paur Dirac’s paper [8] on the
same subject. The stimulus received through a lecture by HEsEN-
BERG in Cambridge led him to results similar to ours in Géttingen,
with the difference that he did not have recourse to the known matrix
theory of the mathematicians but discovered for himself and elab-
orated the doctrine of such non-commuting symbols.

The first non-trivial and physically important application of
quantum mechanics was made soon afterwards by W. PauL1 [¢],
who calculated the stationary energy values of the hydrogen atom
by the matrix method and found complete agreement with Bonr’s
formulas. From this moment there was no longer any doubt about
the correctness of the theory.

What the real significance of this formalism Imght be was, how-
ever, by no means clear. Mathematics, as often happens, was
wiser than interpretative thought. While we were still discussing
the point, there occurred the second dramatic surprise: the appear-
ance of SCHRODINGER’s celebrated papers [10]. He followed quite
a different line of thought, which derived from Lours pE BrocLIE
[11]. The latter had a few years previously made the bold assertion,
supported by brilliant theoretical considerations, that wave-
corpuscle dualism, familiar to physicists in the case of light, must
also be exhibited by electrons; to each freely movable electron
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there belongs, according to these ideas, a plane wave of perfectly
definite wavelength, determined by Pranck’s constant and the mass.
This exciting essay by DE Brocrie was well known to us in G6t-
tingen.

One day in 1925 I received a letter from C. J. DavissoN con-
taining singular results on the reflection of electrons from metallic
surfaces. My colleague on the experimental side, James Franck,
and I at once conjectured that these curves of DAvissoN’s were
crystal-lattice spectra of DE BrocLIE’s electron waves, and we
arranged for one of our pupils, W. ErsassEr [12], to investigate
the matter. His result provided the first quantitative proof of DE
BrocLie’s idea, a proof independently given later by DavissoN and
GerMer [13] and by G. P. THoMsON [14], by systematic experi-
ments.

But this familiarity with DE BrocrLIE’s line of thought did not
lead on further toward an application to the electronic structure of
atoms. This was reserved for ScHrRODINGER. He extended DE
BrocLie’s wave equation, which applied to free motion, to the
case in which forces act and gave an exact formulation of the
additional conditions, already hinted at by DE BroGLIE, to which the
wave function ¥ must be subjected—namely, that it should be
single-valued and finite in space and time—and he succeeded in
deriving the stationary states of the hydrogen atom as mono-
chromatic solutions of his wave equation not extending to infinity.
For a short while, at the beginning of 1926, it looked as if suddenly
there were two self-contained but entirely distinct systems of ex-
planation in the field—matrix mechanics and wave mechanics.
But ScHRODINGER himself soon demonstrated their complete
equivalence.

Wave mechanics enjoyed much greater popularity than the
Gottingen or Cambridge version of quantum mechanics. Wave
mechanics operates with a wave function i, which—at least in
the case of one particle—can be pictured in space, and it employs
the mathematical methods of partial differential equations familiar
to every physicist. ScHRODINGER also believed that his wave theory
made possible a return to deterministic classical physics; he pro-
posed (and has emphatically renewed this suggestion quite recently,
[15]) to abandon the particle picture entirely and to speak of electrons
not as particles but as a continuous density distribution |2,
or electric density ¢ 2.

To us in Gottingen this interpretation appeared unacceptable in
the face of the experimental facts. At that time it was already possible
to count particles by means of scintillations or with the Geiger
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counter and to photograph their tracks with the help of the Wilson
cloud chamber.

It appeared to me that it was not possible to arrive at a clear
interpretation of the yr-function by considering bound electrons. I
had therefore been at pains, as early as the end of 1925, to extend
the matrix method, which obviously covered only oscillatory pro-
cesses, in such a way as to be applicable to aperiodic processes. I
was at that time the guest of the Massachusetts Institute of Tech-
nology in the U.S.A., and there I found in NorBErRT WIENER a
distinguished collaborator. In our joint paper [16] we replaced the
matrix by the general concept of an operator and, in this way,
made possible the description of aperiodic processes. Yet we missed
the true approach, which was reserved for ScHRODINGER; and I
immediately took up his method, since it promised to lead to an
interpretation of the y-function. Once more an idea of EINsTEIN’S
gave the lead. He had sought to make the duality of particles (light
quanta or photons) and waves comprehensible by interpreting the
square of the optical wave amplitudes as probability density for the
occurrence of photons. This idea could at once be extended to the
y-function: [¥? must represent the probability density for
electrons {(or other particles). To assert this was easy; but how was
it to be proved?

For this purpose atomic scattering processes suggested themselves.
A shower of electrons coming from an infinite distance, represented
by an incident wave of known intensity (that is, |1/[%) impinge
on an obstacle, say a heavy atom. In the same way that the water
wave caused by a steamer excites secondary circular waves in
striking a pile, the incident electron wave is partly transformed by
the atom into a secondary spherical wave, whose amplitude of
oscillation ¢ is different in different directions. The square of the
amplitude of this wave at a great distance from the scattering centre
then determines the relative probability of scattering in its depend-
ence on direction. If, in addition, the scattering atom is itself
capable of existing in different stationary states, one also obtains
quite automatically from ScHrRODINGER’s wave equation the pro-
babilities of excitation of these states, the electron being scattered
with loss of energy, or inelastically, as it is termed. In this way it
was possible to give the assumptions of BoHr’s theory, first verified
experimentally by FrRanck and HErTz, a theoretical basis [17].
Soon WENTZEL [18] succeeded in deriving RUTHERFORD’s celebrated
formula for the scattering of a-particles from my theory.

But the factor that contributed more than these successes to the
speedy acceptance of the statistical interpretation of the yr-function
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was a paper by HEBENBErG [1g] that contained his celebrated
uncertainty relationship, through which the revolutionary character
of the new conception was first made clear. It appeared that it was
necessary to abandon not only classical physics but also the najve
conception of reality that thought of the particles of atomic physics
as if they were exceedingly small grains of sand. A grain of sand
has at each instant a definite position and velocity. For an electron
this is not the case; if one determines the position with increasing
accuracy, the possibility of determining the velocity becomes less,
and vice versa. I shall return to these questions in a more general
connection, but before doing so would like to say a few words about
the theory of collisions.

The mathematical techniques of approximation I used were
somewhat primitive and were soon improved. Out of the literature,
which has grown to unmanageable proportions, I can name only
a few of the earliest authors, to whom the theory is indebted for
considerable progress: HorLTsMaRk in Norway, FAXEN in Sweden,
BETHE in Germany, MoTT and Massey in Great Britain.

To-day collision theory is a special science, with its own volumin-
ous text-books, and has grown completely over my head. Of course,
in the last resort all the modern branches of physics, quantum
electrodynamics, the theory of mesons, nuclei, cosmic rays, ele-
mentary particles and their transformations, all belong to this
range of ideas, to a discussion of which no bounds could be set.

I should also like to state that during the years 1926 and 1927
I tried another way of justifying the statistical conception of quan-
tum mechanics, partly in collaboration with the Russian physicist
Fock [20]. In the afore-mentioned three-man paper there is a
chapter in which the ScHrRODINGER function is really anticipated;
only it is not thought of as a function ¥ of space, but as function 1r,
of the discrete index n=1,2, ... which enumerates the
stationary states. If the system under consideration is subject to a
force that is variable in time, i, also becomes time-dependent, and

| ¥n(2) |? denotes the probability for the existence of that state
n at time ¢.

Starting from an initial distribution in which only one state is
present, we obtain in this manner transition probabilities, and we
can investigate their properties. In particular, what interested me
most at the time was what happens in the adiabatic limiting case,
that is, in the case of very slowly variable external action; it was
possible to show that, as might have been expected, the probability
of transitions became ever smaller. The theory of transition
probabilities was developed independently by Dirac and made to
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yield results. It may be said that the whole of atomic and nuclear
physics works with this system of concepts, especially in the extremely
elegant form given to them by Dirac [21]; almost all experiments
lead to statements about relative probabilities of events, even if they
appear concealed under the name cross section or the like.

How then does it come about that great discoverers such as
EmNsTEIN, SCHRODINGER, and DE BROGLIE are not satisfied with the
situation? As a matter of fact, all these objections are directed not
against the correctness of the formulas but against their inter-
pretation. Two closely interwoven points of view must be distin-
guished: the question of determinism and the question of reality.

Newtonian mechanics is deterministic in the following sense. If
the initial state (positions and velocities of all particles) of a system
is accurately given, the state at any other time (earlier or later)
may be calculated from the laws of mechanics. All the other
branches of classical physics have been built up in accordance with
this pattern. Mechanical determinism gradually became an article
of faith—the universe as a machine, an automaton. As far as I
can see, this idea has no precursors in ancient or mediaeval phil-
osophy; it is a product of the immense success of Newtonian
mechanics, especially in astronomy. In the nineteenth century it
became a fundamental philosophic principle for the whole of exact
science. I asked myself whether this was really justified. Can we
really make absolute predictions for all time on the basis of the
classical equations of motion? It is easily seen, by simple examples,
that this is the case only if we assume the possibility of absolutely
accurate measurement {of the position, velocity, or other quantities).
Let us consider a particle moving without friction on a straight line
between two end-points (walls) at which it suffers perfectly elastic
recoil. The particle moves backward and forward with constant
speed equal to its initial speed z,, and one can say exactly where it
will be at a stated time provided that , is accurately known.

But if we allow a small inaccuracy Ay,, the inaccuracy of the
prediction of position at time ¢ is tAy,; that s, it increases with ¢.
If we wait long enough, until time ¢, = I/Ay,, where ¢ is the dis-
tance between the elastic walls, the inaccuracy Ax will have become
equal to the whole interval I. Thus it is possible to say absolutely
nothing about the position at a time later than f,, Determinism
becomes complete indeterminism if one admits even the smallest
inaccuracy in the velocity datum. Is there any sense—I mean
physical, not metaphysical, sense—in which one can speak of abso-
lute data? Is it justifiable to say that the co-ordinate x is 7 cm,
where 77 = 3-1415 ... is the familiar transcendental number

N
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that determines the ratio of the circumference of a circle to its
diameter? As an instrument of mathematics, the concept of a
real number represented by a nonterminating decimal is extremely
important and fruitful. As a measure of a physical quantity, the
concept is nonsensical. If the decimal for 7 is interrupted at the
2oth or 25th place, two numbers are obtained which cannot be
distinguished by any measurement from each other and from the
true value. According to the heuristic principle employed by
EmNSTEIN in the theory of relativity and by HEISENBERG in quantum
theory, concepts that correspond to no conceivable observation
ought to be eliminated from physics. This is possible without
difficulty in the present case also; we have only to replace state-
ments like x = 77 cm. by: the probability of the distribution of
values of x has a sharp maximum at x = 7 cm.; and (if we wish to
be more accurate) we can add: of such and such a breadth. In
short, ordinary mechanics must be formulated statistically. I have
occupied myself with this formulation a little recently and have
seen that it is possible without difficulty. This is not the place to go
into the matter more closely. I only wish to emphasize the point
that the determinism of classical physics turns out to be a false
appearance, produced by ascribing too much weight to mathe-
maticological conceptual structures. It is an idol, not an tdeal, in
the investigation of nature and, therefore, cannot be used as an
objection to the essentially indeterministic, statistical interpretation
of quantum mechanics.

Much more difficult is the objection concerned with reality. The
concept of a particle, for example, a grain of sand, contains impli-
citly the notion that it is at a definite position and has a definite
motion. But according to quantum mechanics it is impossible to
determine simultaneously with arbitrary accuracy position and
motion (more correctly momentum, that is, mass times velocity).
‘Thus two questions arise. First, what is there to prevent us from
measuring both quantities with arbitrary accuracy by refined
experiments, in spite of the theoretical assertion? Second, if it
should really turn out that this is not feasible, are we still justified
in applying to the electron the concept of particle and the ideas
assoclated with it?

With regard to the first question, it is clear that if the theory is
correct—and we have sufficient grounds for believing this—the
obstacle to simultaneous measurability of position and motion (and
of other similar pairs of so-called ‘conjugate’ quantities) must lie
in the laws of quantum mechanics itself. This is indeed the case,
but it is not at all obvious. NieLs Borr himself has devoted much
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labour and ingenuity to developing a theory of measurements to
clear up this situation and to meet the most subtle considerations
of EINsTEIN, who repeatedly tried to think out measuring devices
by means of which position and motion could be measured simul~
taneously and exactly. The conclusion is as follows. In order to
measure space co-ordinates and instants of time rigid measuring
rods and clocks are required. On the other hand to measure
momenta and energies arrangements with movable parts are
needed to take up and indicate the impact of the object to be
measured. If we take into consideration the fact that quantum
mechanics is appropriate for dealing with the interaction of object
and apparatus, we see that no arrangement is possible that satisfies
both conditions at the same time. There exist, therefore, mutually
exclusive but complementary experiments, which only in combina-
tion with each other disclose all that can be learned about an
object. This idea of complementarity in physics is generally regarded
as the key to the intuitive understanding of quantum processes.
Bomnr has transferred the idea in an ingenious manner to completely
different fields—for example, to the relationship between conscious-
_ness and brain, to the problem of free will, and to other fundamental
problems of philosophy.

Now to come to the final point—can we still call something with
which the concepts of position and motion cannot be associated in
the usual way a thing, a particle? And if not, what is the reality that
our theory has been invented to describe?

The answer to this question is no longer physics, but philosophy,
and to deal with it completely would overstep the bounds of this
lecture. I have expounded my views on it fully elsewhere [23]-
Here I will only say that I am emphatically for the retention of the
particle idea. Naturally it is necessary to redefine what is meant.
For this purpose well-developed concepts are available, which are
familiar in mathematics under the name of invariants with respect
to transformations. Every object that we perceive appears in
innumerable aspects. The concept of the object is the invariant
of all these aspects. From this point of view, the present universally
used conceptual system, in which particles and waves occur at the
same time, can be completely justified.

The most recent research on nuclei and elementary particles has,
however, led us to limits beyond which this conceptual system in its
turn does not appear to suffice. The lesson to be learned from the
story I have told of the origin of quantum mechanics is that, pre-
sumably, a refinement of mathematical methods will not suffice to
produce a satisfactory theory, but that somewhere in our doctrine
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there lurks a concept not justified by any experience, which will
have to be eliminated in order to clear the way.
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