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Abstract
A pedagogical selection of topics in probability and statistics is presented.
Choice and emphasis are driven by the author’s personal experience, predom-
inantly in the context of physics analyses using experimental data from high-
energy physics detectors.

1 Introduction
These notes are based on a series of three lectures on probability and statistics, given at the AEPSHEP
2012 physics school. While most of the attendance was composed of PhD students, it also included
Master students and young post-docs; in consequence, a variable level of familiarity with the topics
discussed was implicit. For consistency, the scope of the lectures spanned from very general concepts
up to more advanced, recent developments. The first lecture reviewed basic concepts in probability and
statistics; the second lecture focussed on maximum likelihood and multivariate techniques for statistical
analysis of experimental data; the third and last lecture covered topics on hypothesis-testing and interval
estimation. Whenever possible, the notation aligns with common usage in experimental high-energy
physics (HEP), and the discussion is illustrated with examples related to recent physics results, mostly
from the B-factories and the LHC experiments.

2 Basic concepts in probability and statistics
Mathematical probability is an abstract axiomatic concept, and probability theory is the conceptual
framework to assess the knowledge of random processes. A detailed discussion of its development
and formalism lies outside the scope of these notes. Other than standard classic books, like [1], there are
excellent references available, often written by (high-energy) physicists, and well-suited for the needs
of physicists. A non-comprehensive list includes [2–5], and can guide the reader into more advanced
topics. The sections on statistics and probability in the PDG [6] are also a useful reference; often also,
the large experimental collaborations have (internal) forums and working groups, with many useful links
and references.

2.1 Random processes
For a process to be called random, two main conditions are required: its outcome cannot be predicted
with complete certainty, and if the process is repeated under the very same conditions, the new resulting
outcomes can be different each time. In the context of experimental particle physics, such an outcome
could be “a collision”, or “a decay”. In practice, the sources of uncertainty leading to random processes
can be

– due to reducible measurement errors, i.e. practical limitations that can in principle be overcome
by means of higher-performance instruments or improved control of experimental conditions;

– due to quasi-irreducible random measurement errors, i.e. thermal effects;
– fundamental, if the underlying physics is intrinsically uncertain, i.e. quantum mechanics is not a

deterministic theory.
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Obviously in particle physics, all three kinds of uncertainties are at play. A key feature of collider physics
is that events resulting from particle collisions are independent of each other, and provide a quasi-perfect
laboratory of quantum-mechanical probability processes. Similarly, unstable particles produced in HEP
experiments obey quantum-mechanical decay probabilities.

2.2 Mathematical probability
Let Ω be the total universe of possible outcomes of a random process, and let X,Y . . . be elements (or
realizations) of Ω; a set of such realizations is called a sample. A probability function P is defined as a
map onto the real numbers:

P : {Ω} → [0 : 1] ,

X → P(X) . (1)

This mapping must satisfy the following axioms:

P(Ω) = 1 ,

if X ∩ Y = � , then P(X ∪ Y ) = P(X) + P(Y ) , (2)

from which various useful properties can be easily derived, i.e.

P(X) = 1− P(X) ,

P(X ∪X) = 1 ,

P(�) = 1− P(Ω) = 0 ,

P(X ∪ Y ) = P(X) + P(Y )− P(X ∩ Y ) , (3)

(where X is the complement of X). Two elements X and Y are said to the independent (that is, their
realizations are not linked in any way) if

P(X ∩ Y ) = P(X)P(Y ). (4)

2.2.1 Conditional probability and Bayes’ theorem
Conditional probability P(X | Y ) is defined as the probability of X , given Y . The simplest example of
conditional probability is for independent outcomes: from the definition of independence in Eq. (4), it
follows that if X and Y are actually independent, the condition

P(X | Y ) = P(X) (5)

is satisfied. The general case is given by Bayes’ theorem: in view of the relation P(X∩Y ) = P(Y ∩X),
it follows that

P(X | Y ) =
P(Y | X)P(X)

P(Y )
. (6)

An useful corollary follows as consequence of Bayes’ theorem: if Ω can be divided into a number of
disjoint subsets Xi (this division process is called a partition), then

P(X | Y ) =
P(Y | X)P(X)∑
i P(Y | Xi)P(Xi)

. (7)
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2.2.2 The probability density function
In the context of these lectures, the relevant scenario is when the outcome of a random process can be
stated in numerical form (i.e. it corresponds to a measurement): then to each element X (which for
HEP-oriented notation purposes, it is preferable to design as an event) corresponds a variable x (that can
be real or integer). For continuous x, its probability density function (PDF) P (x) is defined as

P(X found in [x, x+ dx]) = P (x)dx , (8)

where P (x) is positive-defined for all values of x, and satisfies the normalization condition
∫ +∞

−∞
dx′P (x′) = 1 . (9)

For a discrete xi, the above definition can be adapted in a straightworward way:

P(X found in xi) = pi ,

with
∑

j

pj = 1 and pk ≥ 0 ∀k . (10)

Finite probabilities are obtained by integration over a non-infinitesimal range. It is sometimes convenient
to refer to the cumulative density function (CDF) :

C(x) =

∫ x

−∞
dx′P (x′) , (11)

so that finite probabilities can be obtained by evaluating the CDF on the boundaries of the range of
interest :

P(a < X < b) = C(b)− C(a) =

∫ b

a
dx′P (x′) . (12)

Other than the conditions of normalization Eq. (9) and positive-defined (or more precisely, to have a
compact support, which implies that the PDF must become vanishingly small outside of some finite
boundary) the PDFs can be arbitrary otherwise, and exhibit one or several local maxima or local minima.
In contrast, the CDF is a monotonically increasing function of x, as shown on Figure 1, where a generic
PDF and its corresponding CDF are represented.

x

5 4 3 2 1 0 1 2 3 4 5

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
  
P

(x
)

0

0.005

0.01

0.015

0.02

0.025

x

5 4 3 2 1 0 1 2 3 4 5

P
(x

’)
d
x
’

x ∞∫
C

u
m

u
la

ti
v
e
 D

e
n
s
it
y
  
C

(x
)=

0

0.2

0.4

0.6

0.8

1

Fig. 1: Left: a probability density function (PDF) for a variable x; the PDF is assumed to have negligible values
outside of the plotted range. Right: the corresponding cumulative density function (CDF), plotted in the same
range.

3

PROBABILITY AND STATISTICS FOR PARTICLE PHYSICISTS

255



2.2.3 Multidimensional PDFs
When more than on random number is produced as outcome in a same event, it is convenient to introduce
a n-dimensional set of random elements ~X = {X1, X2, . . . , Xn}, together with its corresponding set of
random variables ~x = {x1, x2, . . . , xn} and their multidimensional PDF:

P (~x)d~x = P (x1, x2, . . . , xn)dx1dx2 . . . dxn . (13)

Lower-dimensional PDFs can be derived from Eq. (13); for instance, when one specific variable x = xj
(for fixed j, with 1 ≤ j ≤ n) is of particlar relevance, its one-dimensional marginal probability density
PX(x) is extracted by integrating P (~x) over the remaining n− 1 dimensions (excluding the j-th):

PX(x)dx = dx

∫ +∞

−∞
dx1 . . .

∫ +∞

−∞
dxj−1

∫ +∞

−∞
dxj+1 . . .

∫ +∞

−∞
dyn−1 . (14)

Without loss of generality, the discussion can be restricted to the two-dimensional case, with random
elements X and Y and random variables ~X = {x, y}. The finite probability in a rectangular two-
dimensional range is

P(a < X < b and c < Y < d) =

∫ b

a
dx

∫ d

c
dyP (x, y) . (15)

For a fixed value of Y , the conditional density function for X is given by

P (x | y) =
P (x, y)∫
dyP (x, y)

=
P (x, y)

PY (y)
. (16)

As already mentioned, the relation P (x, y) = PX(x) ·PY (y) holds only if X and Y are independent; for
instance, the two-dimensional density function in Figure 2 is an example of non-independent variables,
for which P (x, y) 6= PX(x) · PY (y).

3 Parametric PDFs and parameter estimation
The description of a random process via density functions is called a model. Loosely speaking, a para-
metric model assumes that its PDFs can be completely described using a finite number of parameters 1.
A straightforward implementation of a parametric PDF is when its parameters are analytical arguments
of the density function; the notation P (x, y, . . . ; θ1, θ2, . . . ) indicates the functional dependence of the
PDF (also called its shape) in terms of variables x1, y2, . . . and parameters θ1, θ2, . . . .

3.1 Expectation values
Consider a random variable X with PDF P (x). For a generic function f(x), its expectation value E[f ]
is the PDF-weighted average over the x range :

E[f ] =

∫
dxP (x)f(x) . (17)

Being often used, some common expectation values have their own names. For one-dimensional PDFs,
the mean value and variance are defined as

Mean value : µ = E[x] =

∫
dxP (x)x , (18)

Variance : σ2 = V [x] = E[x2]− µ2 = E[(x− µ)2] ; (19)

1This requirement needs not to be satisfied; PDFs can also be non-parametric (which is equivalent to assume that an infinite
number of parameters is needed to describe them), or they can be a mixture of both types.
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Fig. 2: A two-dimensional probability density function (PDF) for non-independent variables x and y: the pattern
implies that in general, the probability densities are larger when x and y are both large or both small (i.e. they are
positively correlated), and thus the variables are not independent. The PDF is assumed to have negligible values
outside of the plotted two-dimensional range.

for multidimensional PDFs, the covariance Cij = C(xi, xj) and the dimensionless linear correlation
coefficient ρij are defined as:

Covariance : Cij = E[xixj ]− µiµj = E[(xi − µi)(xj − µj)] , (20)

Linear correlation : ρij =
Cij
σiσj

. (21)

By construction, linear correlation coefficients have values in the −1 ≤ ρij ≤ 1 interval. The sign of the
ρ coefficient indicates the dominant trend in the (xj ;xj) pattern: for positive correlation, the probability
density is larger when xi and xj are both small or large, while a negative correlation indicates that
large values of xi are preferred when small values of xj are realized (and viceversa). When the random
variables Xi and Xj are independent, that is P (xi, xj) = PXi(xi)PXj (xj), one has

E[xixj ] =

∫ ∫
dxidxjP (xi, xj)xixj = µiµj , (22)

and thus ρij = 0: independent variables have a zero linear correlation coefficient. Note that the converse
needs not be true: non-linear correlation patterns among non-independent variables may “conspire”
and yield null values of the linear correlation coefficient, for instance if negative and positive correlation
patterns in different regions of the (xi, xj) plane cancel out. Figure 3 shows examples of two-dimensional
samples, illustrating a few representative correlation patterns among their variables.

3.2 Shape characterisation
In practice, the true probability density function may not be known, and the accessible information can
only be extracted from a finite-size sample (say consisting of N events), which is assumed to have been
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Fig. 3: Examples of two-dimensional probability density functions, illustrating four typical correlation patterns.
From left ro right, the figures show two variables which exhibit: a large, positive linear correlation (with ρ = +0.9);
no correlation, with a zero linear correlation coefficient; a slightly milder, negative correlation (with ρ = −0.5);
and a more complex correlation pattern, with variables very strongly correlated, but in such a way that the linear
correlation coefficient is zero.

originated from an unknown PDF. Assuming that this underlying PDF is parametric, a procedure to esti-
mate its functional dependence and the values of its parameters is called a characterisation of its shape.
Now, only a finite number of expectation values can be estimated from a finite-size sample. Therefore,
when choosing the set of parameters to be estimated, each should provide information as useful and com-
plementary as possible; such procedure, despite being intrinsically incomplete, can nevertheless prove
quite powerful.

The procedure of shape characterisation is first illustrated with the one-dimensional case of a single
random variable x. Consider the empirical average x (also called sample mean)

x =
1

N

N∑

i=1

xi . (23)

As shown later in Sec. 3.3.1, x is a good estimator of the mean value µ of the underlying distribution
P (x). In the same spirit, the quadratic sample mean (or root-mean-square RMS),

RMS =

√
x2 − (x)2 , (24)

is a reasonable estimator of its variance σ2 (an improved estimator of variance can be easily derived from
the RMS, as discussed later in Sec. 3.3.1). Intuitively speaking, these two estimators together provide
complementary information on the “location” and “spread” of the region with highest event density in x.

The previous approach can be discussed in a more systematic way, by means of the characteristic
function, which is a transformation from the x-dependence of the PDF P (x) onto a k-dependence of
C[k], defined as

C[k] = E
[
eik

x−µ
σ

]
=
∑

j

(ik)j

j!
µj . (25)

The coefficients µ of the expansion are called reduced moments; by construction, the first moments are
µ1 = 0 and µ2 = 1; these values indicate that in terms of the rescaled variable x′ = (x− µ)/σ, the PDF
has been shifted to have zero mean and scaled to have unity variance.

In principle, the larger the number of momenta µj that are estimated, the more detailed is the char-
acterisation of the PDF shape. Among higher-order moments, the third and fourth have specific names,
and their values can be interpreted, in terms of shape, in a relatively straightforward manner. The third
moment is called skewness: a symmetric distribution has zero skewness, and a negative (positive) value
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indicates a larger spread to the left (right) of its median. The fourth moment is called kurtosis; it is a
positive-defined quantity, that (roughly speaking) can be related to the "peakedness" of a distribution: a
large value indicates a sharp peak and long-range tails (such a distribution is sometimes called leptokur-
tic), while a smaller value reflects a broad central peak with short-range tails (a so-called platykurtic
distribution). Figure 4 shows a few distributions, chosen to illustrate the relation of momenta and shapes.
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Fig. 4: Examples of probability density functions, illustrating the role of momenta in the characterization of PDF
shapes. For all PDFs plotted, their mean values are 0 and their variances are 1. Top plots : the PDF on the left
(resp. right) exhibits an asymmetric, non-gaussian tail to the left (resp. right) of its peak, and thus has a positive
(resp. negative) skewness. Bottm plots: the PDF on the left (resp. right) shows a narrow peak and long-range
tails (resp. broad core and short-range tails), and has a large (resp. small) kurtosis. In each plot, a Gaussian PDF
(dashed line) with mean value 0 and variance 1, is also overlaid.

3.3 Parameter estimation
The characterization of the shape of a PDF through a sequential estimation of shape parameters discussed
in Sec. 3.2, aimed at a qualitative introduction to the concept of parameter estimation (also called point
estimation in the litterature). A more general approach is now discussed in this paragraph.

Consider a n-dimensional, k-parametric PDF,

P ( x1, x2, . . . , xn ; θ1, θ2, . . . , θk ) , (26)

for which the values θ1, . . . , θk are to be estimated on a finite-sized sample, by means of a set of esti-
mators denoted θ̂1, . . . , θ̂k. The estimators themselves are random variables, with their own mean values
and variances: their values differ when estimated on different samples. The estimators should satisfy two
key properties: to be consistent and unbaised. Consistency ensures that, in the infinite-sized sample limit,
the estimator converges to the true parameter value; absence of bias ensures that the expectation value of
the estimator is, for all sample sizes, the true parameter value. A biased, but consistent estimator (also
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called asymptotically unbiased) is such that the bias decreases with increasing sample size. Additional
criteria can be used to characterize the quality and performance of estimators; two often mentioned are

– efficiency: an estimator with small variance is said to be more efficient than one with larger vari-
ance;

– robustness: this criterion characterizes the sensitivity of an estimator to uncertainties in the under-
lying PDF. For example, the mean value is robust against uncertainties on even-order moments,
but is less robust with respect to changes on odd-order ones.

Note that these criteria may sometimes be mutually conflicting; for practical reasons, it may be preferable
to use an efficient, biased estimator to an unbiased, but poorly convergent one.

3.3.1 The classical examples: mean value and variance
The convergence and bias requirements can be suitably illustrated with two classical, useful examples,
often encountered an many practical situations: the mean value and the variance.

The empirical average x is a convergent, unbiased estimation of the mean value µ of its underlying
distribution: µ̂ = x. This statement can easily be demostrated, by evaluating the expectation value and
variance of x:

E [x] =
1

N

N∑

i=1

E [x] = µ , (27)

V [x] = E
[
(x− µ)2

]
=

σ2

N
. (28)

In contrast, the empirical RMS of a sample is a biased, asymptotically unbiased estimator of the variance
σ2: this can be demonstrated by first rewriting its square (also called sample variance) in terms of the
mean value:

RMS2 =
1

N

N∑

i=1

(xi − x)2 =
1

N

N∑

i=1

(xi − µ)2 − (x− µ)2 , (29)

and so its expectation value is

E
[
RMS2

]
= σ2 − V [x] =

N − 1

N
σ2 , (30)

which, while properly converging to the true variance σ2 in the N →∞ limit, systematically underesti-
mates its value for a finite-sized sample. One can instead define a modified estimator

N

N − 1
RMS2 =

1

N − 1

N∑

i=1

(xi − x)2 , (31)

that ensures, for finite-sized samples, an unbiased estimation of the variance.

In summary, consistent and unbiased estimators for the mean value µ and variance σ2 of an un-
known underlying PDF can be extracted from a finite-sized sample realized out of this PDF:

µ̂ =
1

N

N∑

i=1

xi , (32)

σ̂2 =
1

N − 1

N∑

i=1

(xi − µ̂)2 . (33)

As a side note, the 1/N and 1/(N − 1) factors for µ̂ in Eq. (32) and for σ̂2 in Eq. (33) can be intuitively
understood as follows: while the empirical average be estimated even on the smallest sample consisting
of a single event, at least two events are needed to estimate their empirical dispersion.
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3.3.2 Covariance, correlations, propagation of uncertainties
These two classical examples discussed in 3.3.1 refer to a single random variable. In presence of several
random variables, expressed as a random n-dimensional vector ~x = {x1, . . . , xn}, the discussion leads
to the definition of the empirical covariance matrix, whose elements Ĉab can be estimated on a sample
of N events as

Ĉab =
1

N − 1

N∑

i=1

(xa,i − µ̂a) (xb,i − µ̂b) . (34)

(the a, b indices run over random variables, 1 ≤ a, b ≤ n). Assuming the covariance is known (i.e.
by means of the estimator above, or from first principles), the variance of an arbitrary function of these
random variables f(~x) can be evaluated from a Taylor-expansion around the mean values ~̂µ as

f (~x) = f
(
~̂µ
)

+
n∑

a=1

df

dxa

∣∣∣∣
~x=~̂µ

(xa − µ̂a) , (35)

which leads to E [f(~x)] ' f(~̂µ); similarly,

E
[
f2(~x)

]
' f2(~̂µ) +

n∑

a,b=1

df

dxa

df

dxb

∣∣∣∣
~x=~̂µ

Ĉab , (36)

and thus the variance of f can be estimated as

σ̂2
f '

n∑

a,b=1

df

dxa

df

dxb

∣∣∣∣
~x=~̂µ

Ĉab . (37)

This expression in Eq. (37), called the error propagation formula, allows to estimate the variance of a
generic function f(~x) from the estimators of mean values and covariances.

A few particular examples of error propagation deserve being mentioning explicitly:

– If all random variables {xa} are uncorrelated, the covariance matrix is diagonal, Cab = σ2
aδab and

the covariance of f(~x) reduces to

σ̂2
f '

n∑

a=1

(
df

dxa

)2
∣∣∣∣∣
~x=~̂µ

σ̂2
a . (38)

– For the sum of two random variables S = x1 + x2, the variance is

σ2
S = σ2

1 + σ2
2 + 2C12 = σ2

1 + σ2
2 + 2σ1σ2ρ12, (39)

and the corresponding generalization to more than two variables is straightforward:

σ2
S =

∑

a,b

σaσbρab . (40)

In absence of correlations, one says that absolute errors are added in quadrature: hence the expres-
sion in Eq. (39) is often written as σS = σ1 ⊕ σ2.

– For the product of two random variables P = x1x2, the variance is

(σP
P

)2
=

(
σ1

x1

)2

+

(
σ2

x2

)2

+ 2
σ1

x1

σ2

x2
ρ12 , (41)
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with its generalization to more than two variables:
(σP
P

)2
=
∑

a,b

σa
xa

σb
xb
ρab . (42)

In absence of correlations, one says that relative errors are added in quadrature, and Eq. (41)
σP /P = σ1/x1 ⊕ σ2/x2.

– For a generic power law function, Z = xn1
1 xn2

2 . . . , if all variables are uncorrelated, the variance
is

σZ
Z

= n1
σ1

x1
⊕ n2

σ2

x2
⊕ . . . (43)

4 A survey of selected distributions
In this Section, a brief description of distributions, often encountered in practical applications, is pre-
sented. The rationale leading to this choice of PDFs is driven either by their specific mathematical
properties, and/or in view of their common usage in the modellingi of important physical processes;
such features are correspondingly emphasized in the discussion.

4.1 Two examples of discrete distributions: Binomial and Poisson
4.1.1 The binomial distribution
Consider a scenario with two possible outcomes: “success” or “failure”, with a fixed probability p of
“success” being realized (this is also called a Bernouilli trial). If n trials are performed, 0 ≤ k ≤ n may
actually result in “success”; it is assumed that the sequence of trials is irrelevant, and only the number of
“success” k is considered of interest. The integer number k follows the so-called Binomial distribution
P (k;n, p):

Pbinomial (k;n, p) =
n!

k!(n− k)!
pk (1− p)n−k , (44)

where k is the random variable, while n and p are parameters. The mean value and variance are

E [k] =

n∑

k=1

kP (k;n, p) = np ,

V [k] = np(1− p) . (45)

4.1.2 The Poisson distribution
In the n→∞, p→ 0 limit (with λ = np finite and non-zero) for the Binomial distribution, the random
variable k follows the Poisson distribution P (k;λ),

PPoisson (k;λ) =
λke−λ

k!
, (46)

for which λ is the unique parameter. For Poisson, the mean value and variance are the same:

E [k] = V [k] = λ . (47)

The Poisson distribution, sometimes called law of rare events (in view of the p → 0 limit), is a useful
model for describing event-counting rates. Examples of a Binomial and a Poisson distribution, for n =
10, p = 0.6 and for λ = 6.5, respectively, are shown on Figure 5.
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Fig. 5: Examples of a Binomial (left) and a Poisson (right) distributions, with parameters n = 10, p = 0.6 and
λ = 6.5, respectively.

4.2 Common examples of real-valued distributions
The first two continuous random variables discussed in this paragraph are the uniform and the exponential
distributions, illustrated in Figure 6.
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Fig. 6: Examples of a uniform (left) and an exponentially-decreasing (right) distribution. For the uniform distri-
bution, values used for the boundary parameters are a = −1, b = 1; for the exponential, two values ξ = 1 (solid
line) and ξ = 2 (dashed line) are used.

4.2.1 The uniform distribution
Consider a continuous random variable x, with a probability density P (x; a, b) that is non-zero only
inside a finite interval [a, b]:

Puniform (x; a, b) =

{
1
b−a , a ≤ x ≤ b ,
0 , otherwise .

(48)

For this uniform distribution, the mean value and variance are

E [x] =
a+ b

2
, (49)

V [x] =
(b− a)2

12
. (50)

While not being the most efficient one, a straightforward Monte-Carlo generation approach would be
based on a uniform distribution in the [0, p] range, and use randomly generated values of x in the [0, 1]
range as implementation of an accept-reject algorithm with success probability p.
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4.2.2 The exponential distribution
Consider a continuous variable x, with a probability density P (x; ξ) given by

Pexponential (x; ξ) =

{ 1
ξ e
−x/ξ , x ≥ 0 ,

0 , otherwise ,
(51)

whose mean value and variance are

E [x] = ξ , (52)

V [x] = ξ2 . (53)

A common application of this exponential distribution is the description of phenomena occuring inde-
pendently at a constant rate, such as decay lengths and lifetimes. In view of the self-similar feature of
the exponential function:

P (t− t0|t > t0) = P (t) , (54)

the exponential distribution is sometimes said to be memoryless.

4.2.3 The Gaussian distribution
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Fig. 7: A Gaussian PDF, with parameter values µ = 3.5 and σ = 1.5.

Now turn to the Normal (or Gaussian) distribution. Consider a random variable x, with probability
density

PGauss (x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (55)

and with mean value and variance given by

E [x] = µ , (56)

V [x] = σ . (57)

The PDF corresponding to the special µ = 0, σ = 1 case is usually called “reduced normal”.

On purpose, the same symbols µ and σ have been used both for the parameters of the Gaussian
PDF and for the mean value and variance. This is an important feature: the Gaussian distribution is
uniquely characterized by its first and second moments. For all Gaussians, the [µ− σ;µ+ σ] covers
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68.3% of PDF integral, and is customary called a “one-sigma interval”; similarly for the two-sigma
interval and its 95.4%.

The dispersion of a peaked distribution is sometimes characterised in terms of its FWHM (full
width at half-maximum); for Gaussian distributions, this quantity is uniquely related to its variance, as
FWHM = 2

√
2 ln 2 ' 2.35σ; Figure 7 provides a graphical illustration of the Gaussian PDF and its

parameters.

In terms of conceptual relevance and practical applications, the Gaussian certainly outnumbers all
other common distributions; this feature is largely due to the central limit theorem, which asserts that
Gaussian distributions are the limit of processes arising from multiple random fluctuations. Consider
n independent random variables ~x = {x1, x2, . . . , xn}, each with mean and variances µi and σ2

i ; the
variable S(~x), built as the sum of reduced variables

S =
1√
n

n∑

i=1

xi − µi
σi

, (58)

can be shown to have a distribution that, in the large-n limit, converges to a reduced normal distribution,
as illustrated in Figure 8 for the sum of up to five uniform distributions. Not surprisingly, any measure-
ment subject to multiple sources of fluctuations is likely to follow a distribution that can be approximated
with a Gaussian distribution to a good approximation, regardless of the specific details of the processes
at play.
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Fig. 8: A graphical illustration of the central limit theorem. The top left plot compares the histogram (dashed
curve) of a sample realization from a uniform variable x1, with a normal PDF (solid line) of same mean and
variance; similarly, the plots on the top right, bottom left and bottom right plot the corresponding histograms for
the sums S2, S3 and S5 of two, three and five reduced uniform variables x1, . . . , x5, respectively. The sequence of
variables follow distributions that quickly converge to a reduced Gaussian.

The Gaussian is also encountered as the limiting distribution for the Binomial and and Poisson
ones, in the large n and large λ limits, respectively:

Pbinomial (k;n→∞, p) → PGauss (k;np, np(1− p)) , (59)
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PPoisson (k;λ→∞) → PGauss

(
k;λ,

√
λ
)
. (60)

Note that, when using a Gaussian as approximation, an appropriate continuity correction needs to be
taken into account: the range of the Gaussian extends to negative values, while Binomial and Poisson are
only defined in the positive range.

4.2.4 The χ2 distributions
Now the χ2 (or chi-squared) distributions are considered. The following PDF

Pχ2 (x;n) =

{
xn/2−1e−x/2

2n/2−1Γ(n2 )
, x ≥ 0 ,

0 , otherwise ,
(61)

with a single parameter n, and where Γ (n/2) denotes the Gamma function, has mean value and variance
given by

E [x] = n ,

V [x] = 2n . (62)

The shape of the χ2 distribution depends thus on n, as shown in Figure 9 where the χ2 PDF, for the first
six integer values of the n parameter, are shown. It can be shown that the χ2 distribution can be written
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Fig. 9: The first six χ2 probability density functions, for integer numbers of degrees of freedom n. The width of
solid lines increases monotonically with n in the n = 1, . . . , 6 range.

as the sum of squares of n normal-reduced variables xi, each with mean µi and variance σ2
i :

Pχ2 (x;n) =

n∑

i=1

(
xi − µi
σi

)2

. (63)

In view of this important feature of the χ2 distribution, the quantity n is called “number of degrees of
freedom”; this name refers to the expected behaviour of a least-square fit, where nd data points are used
to estimate np parameters; the corresponding number of degrees of freedom is nd − np. For a well-
behaved fit, the χ2 value should follow a χ2 distribution. As discussed in 7.1, the comparison of an
observed χ2 value with its expectation, is an example of goodness-of-fit test.
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4.2.5 The Breit-Wigner and Voigtian distributions
The survey closes with the discussion of two physics-motivated PDFs. The first is the Breit-Wigner
function, which is defined as

PBW (x; Γ, x0) =
1

π

Γ/2

(x− x0)2 + Γ2/4
, (64)

whose parameters are the most probable value x0 (which specifies the peak of the distribution), and
the FWHM Γ. The Breit-Wigner is also called Lorentzian by physicists, and in matematics it is often
referred to as the Cauchy distribution. It has a peculiar feature, as a consequence of its long-range tails:
the empirical average and empirical RMS are ill-defined (their variance increase with the size of the
samples), and cannot be used as estimators of the Breit-Wigner parameters. The truncated mean and
interquartile range, which are obtained by removing events in the low and high ends of the sample, are
safer estimators of the Breit-Wigner parameters.

In the context of relativistic kinematics, the Breit-Wigner function provides a good description of
a resonant process (for example the invariant mass of decay products from a resonant intermediate state);
for a resonance, the parameters x0 and Γ are referred to as its mass and its natural width, respectively.

Finally, the Voigtian function is the convolution of a Breit-Wigner with a Gaussian,

PVoigt (x;x0,Γ, σ) =

∫ +∞

−∞
dx′PGauss

(
x′; 0, σ

)
PBW

(
x− x′;x0,Γ

)
, (65)

and is thus a three-parameter distribution: mass x0, natural width Γ and resolution σ. While there is no
straightforward analytical form for the Voigtian, efficient numerical implementations are available, i.e.
the TMath::Voigt member function in the ROOT [7] data analysis framework, and the RooVoigtian
class in the RooFit [8] toolkit for data modeling. For values of Γ and σ sufficiently similar, the FWHM
of a Voigtian can be approximated as a combination of direct sums and sums in quadrature of the Γ and
σ parameters. A simple, crude approximation yields :

FWHMVoigt ' [(Γ/2)⊕ σ] + Γ/2 . (66)

When the instrumental resolutions are sufficiently well described by a Gaussian, a Voigtian distribution
is a good model for observed experimental distributions of a resonant process. Figure 10 represents an
analytical Breit-Wigner PDF (evaluated using the Z boson mass and width as parameters), and a dimuon
invariant mass spectrum around the Z boson mass peak, as measured by the ATLAS experiment using 8
TeV data [9]. The width of the observed peak is interpreted in terms of experimental resolution effects,
as indicated by the good data/simulation agreement. Of course, the ATLAS dimuon mass resolution is
more complicated than a simple Gaussian (as hinted by the slightly asymmetric shape of the distribu-
tion), therefore a simple Voigtian function would not have reached the level of accuracy provided by the
complete simulation of the detector resolution.

5 The maximum likelihood theorem and its applications
The discussion in Section 3.3 was aimed at describing a few intuitive examples of parameter estimation
and their properties. Obviously, such case-by-case approaches are not general enough. The maximum
likelihood estimation (MLE) is an important general method for parameter estimation, and is based on
properties following the maximum likelihood (ML) theorem.

Consider a sample made of N independent outcomes of random variables ~x, arising from a n-
parametric PDF P (~x; θ1, . . . , θn), and whose analytical dependence on variables and parameters is
known, but for which the value(s) of at least one of its parameters θ is unknown. With the MLE, these
values are extracted from an analytical expression, called the likelihood function, that has a functional
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Fig. 10: Left: the probability density function for a Breit-Wigner distribution, using the PDG [6] values for the Z
boson mass and width as parameters. Right: the invariant dimuon mass spectrum around the Z boson mass peak;
the figure is from an ATLAS measurement using 8 TeV data [9].

dependence derived from the PDF, and is designed to maximise the probability of realizing the observed
outcomes. The likelihood function L can be written as

L (θ1, . . . , θn; ~x) =
N∏

i=1

P (~xi; θ1, . . . , θn) . (67)

This notation shows implictly the functional dependence of the likelihood on the parameters θ, and on
theN realizations ~x of the sample. The ML theorem states that the θ̂1, . . . , θn = θ̂n values that maximize
L,

L
(
θ̂1, . . . , θ̂n~x

)
= max|θ {L (θ1, . . . , θn)} . (68)

are estimators of the unknown parameters θ, with variances σ̂θ that are extracted from the covariance of
L around its maximum.

In a few cases, the MLE can be solved analytically. A classical example is the estimation of the
mean value and variance of an arbitrary sample, that can be analytically derived under the assumption
that the underlying PDF is a Gaussian. Most often though, a numerical study of the likelihood around the
θ parameter space is needed to localize the θ̂ point that minimizes − lnL (the “negative log-likelihood”,
or NLL); this procedure is called a ML fit.

5.1 Likelihood contours
Formally speaking, several conditions are required for the ML theorem to hold. For instance, L has to
be at least twice derivable with respect to all its θ parameters; constraints on (asymptotical) unbiased
behaviour and efficiency must be satisfied; and the shape of L around its maximum must be normally
distributed. This last condition is particularly relevant, as it ensures the accurate extraction of errors.
When it holds, the likelihood is said (in a slightly abusive manner) to have a “parabolic” shape (more in
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reference to − lnL than to the likelihood itself), and its expansion around θ̂ can be written as

f
(
~̂θ, ~θ,Σ

)
=

1√
2π |Σ|

exp

{
−1

2

(
~̂θi − ~θi

)
Σ−1
ij

(
~̂θj − ~θj

)}
. (69)

In Eq. (69) the covariance matrix Σ has been introduced, and its elements are given by :

Σ−1
ij = −E

[
∂ lnL
∂θi

∂ lnL
∂θj

]
. (70)

When moving away from its maximum, the likelihood value decreases by amounts that depend on the
covariance matrix elements:

−2∆ lnL = −2
[
lnL(~θ)− lnL(~̂θ)

]
=
∑

i,j

(
θi − θ̂i

)
Σ−1
ij

(
θi − θ̂j

)
. (71)

This result, together with the result on error propagation in Eq. (37), indicates that the covariance matrix
defines contour maps around the ML point, corresponding to confidence intervals. In the case of a single-
parameter likelihood L(θ), the interval contained in a −2∆ lnL < 1 contour around θ̂ defines a 68%
confidence interval, corresponding to a −σθ ≤ θ − θ̂ ≤ σθ range around the ML point; in consequence
the result of this MLE can be quoted as

(
θ̂ ± σ̂θ

)
.

5.2 Selected topics on maximum likelihood
5.2.1 Samples composed of multiple species
In a typical scenario, the outcome of a random process may arise from multiple sources. To be specific,
consider that events in the data sample are a composition of two “species”, called generically “signal”
and “background” (the generalization to scenarios with more than two species is straighforward). Each
species is supposed to be realized from its own probability densities, yielding similar (but not identical)
signatures in terms of the random variables in the data sample; it is precisely these residual differences
in PDF shapes that are used by the ML fit for a statistical separation of the sample into species. In the
two-species example, the underlying total PDF is a combination of both signal and background PDFs,
and the corresponding likelihood function is given by

L (θ; ~x) =
N∏

i=1

[fsigPsig(~x; θ) + (1− fsig)Pbkg(~x; θ)] , (72)

where Psig and Pbkg are the PDFs for the signal and background species, respectively, and the signal
fraction fsig is the parameter quantifying the signal purity in the sample: 0 ≤ fsig ≤ 1. Note that, since
both Psig and Pbkg satisfy the PDF normalization condition from Eq. (9), the total PDF used in Eq. (72)
is also normalized. It is worth mentioning that some of the parameters θ can be common to both signal
and background PDFs, and others may be specific to a single species. Then, depending on the process
and the study under consideration, the signal fraction can either have a known value, or belong to the set
of unknown parameters θ to be estimated in a ML fit.

5.2.2 Extended ML fits
In event-counting experiments, the actual number of observed events of a given species is a quantity of
interest; it is then convenient to treat the number of events as an additional parameter λ of the likelihood
function. In the case of a single species, this amounts to “extending” the likelihod,

L (λ, θ; ~x) =
λNe−λ

N !

N∏

i=1

P (~xi; θ) . (73)
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where an additional multiplicative term, corresponding to the Poisson distribution (c.f. Section 4.1), has
been introduced. (the N ! term in the denominator can be safely dropped; a global factor has no impact
on the shape of the likelihood function nor on the ML fit results). It is straightforward to verify that the
Poisson likelihod in Eq. (73) is maximal when λ̂ = N , as intended; now, if some of the PDFs also depend
on λ, the value of λ̂ that maximises L may differ from N . The generalization to more than one species
is straightforward as well; for each species, a multiplicative Poisson term is included in the extended
likelihood, and the PDFs of each species are weighted by their corresponding relative event fractions; in
presence of two species, the extended version of the likelihood in Eq. 72 becomes:

L (Nsig, Nbkgθ; ~x) = (Nsig +Nbkg)Ne−(Nsig+Nbkg)
N∏

i=1

[NsigPsig(~x; θ) +NbkgPbkg(~x; θ)] . (74)

5.2.3 “Non-parabolic” likelihoods, likelihoods with multiple maxima
As discussed in Section 5.1, the condition in Eq. (69) about the asymptotically normal distribution of
the likelihood around its maximum is crucial to ensure a proper interpretation of −2∆ lnL contours in
terms of confidence intervals. In this paragraph, two scenarios in which this condition can break down
are discussed.
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Fig. 11: Left: two-dimensional likelihood contours in the mw −mt plane, obtained from a global electroweak fit
(EW) performed by the gFitter collaboration [10]. Center: the change in the EW likelihood as a function of mt,
expressed in terms of δχ2 = −2∆ lnL. Both plots illustrate the non-parabolic shape of the EW likelihood.

A first scenario concerns a likelihood that is not totally symmetric around its maximum. Such
a feature may occur, when studying low-statistics data samples, in view of the Binomial or Poissonian
behaviour of event-counting related quantities (c.f. Figure 5). But it can also occur on larger-sized data
samples, indicating that the model has a limited sensitivity to the parameter θ being estimated, or as a
consequence of strong non-linear relations in the likelihood function. As illustration, examples of two-
and one-dimensional likelihood contours, with clear non-parabolic shapes, are shown in Figure 11.

Also, the likelihood function may possess one or more local maxima, or even completely degen-
erate maxima. There are various possible sources for such degeneracies. For example in models with
various species, if some PDF shapes are not different enough to provide a robust statistical discrimina-
tion among their corresponding species. For example, if swapping the PDFs for a pair of species yields
a sufficiently good ML fit, a local maximum may emerge; on different sample realizations, the roles of
local and global maxima may alternate among the correct and swapped combinations. The degeneracies
could also arise as a reflexion of explicit, physical symmetries in the model: for example, time-dependent
asymmetries in B0 → π+π− decays are sensitive to the CKM angle α, but the physical observable is a
function of cos 2(α+ δ), with an addtional phase δ at play; in consequence, the model brings up to eight
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Fig. 12: The change in likelihood, expressed in terms of a variant called “confidence level” CL, shown as a
function of the CKM angle α; the definition of CL is such that CL = 0 at the solutions of the ML fit. An eight-fold
constraint on α is extracted from measurements in B → ππ decays by the BABAR experiment [11]. The two pairs
of solutions around ∼ 130◦ are very close in values, and barely distinguishable in the figure.

indistinguishible solutions for the CKM angle α, as illustrated in Figure 12.

In all such cases, the (possibly disjoint) −2∆ lnL < 1 interval(s) around the θ̂ central value(s)
cannot be simply reported with a symmetric uncertainty σ̂θ only. In presence of a single, asymmetric
solution, the measurement can be quoted with asymmetric errors, i.e. θ̂+σ+

−σ− , or better yet, by providing
the detailed shape of −2∆ lnL as a function of the estimated parameter θ. For multiple solutions, more
information needs to be provided: for example, amplitude analyses (“Dalitz-plot” analyses) produced
by the B-factories BABAR and Belle, often reported the complete covariance matrices around each local
solution (see e.g. [12, 13] as examples).

5.2.4 Estimating efficiencies with ML fits
Consider a process with two possible outcomes: “yes” and “no”. The intuitive estimator of the efficiency
ε is a simple ratio, expressed in terms of the number of outcomes nyes and nno of each kind:

ε̂ =
nyes

nyes + nno
, (75)

for which the variance is given by

V [ε̂] =
ε̂(1− ε̂)

n
, (76)

where n = nyes +nno is the total number of outcomes realized. This estimator ε̂ clearly breaks down for
low n, and in the very low or very high efficiency regimes. The MLE technique offers a robust approach
to estimate efficiencies: consider a PDF P (x; θ) to model the sample, and include in it an additional
discrete, bivariate random variable c = {yes, no}, so that the PDF becomes

P (x, c; θ) = δ(c− yes)ε(x, θ) + δ(c− no) [1− ε(x, θ)] . (77)

In this way, the efficiency is no longer a single number, but a function of x (plus some parameters θ that
may be needed to characterize its shape). With this function, the efficiency can be extracted in different
x domains, as illustated in Figure 13, or can be used to produce a multidimensional efficiency map.
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Fig. 13: Left: the frequency of events in a sample, as a function of a variable x. The sample contains two categories
of events: “accepted” and “rejected”. The red dots indicate the bins of the histogram for those “accepted” only, and
the black dots for the two categories cumulated. Right: the efficiency as a parametric function of x, with parameter
values extracted from a ML fit to the data sample. Figure extracted from the RooFit user’s guide [8].

5.3 Systematic uncertainties
As discussed in Section 5.1, in MLE the covariance of L is the estimator of statistical uncertainties.
Other potential sources of (systematical) uncertainties are usually at play, and need to be quantified. For
this discussion, a slight change in the notation with respect to Eq.(67) is useful; in this notation, the
likelihood function is now written as

L (µ1, . . . , µp , θ1, . . . , θk; ~x) , (78)

where the parameters are explicitly partitioned into a set µ1, . . . , µp, called parameters of interest (POI),
that correspond to the actual quantities that are to be estimated; and a set θ1, . . . , θk, called nuisance
parameters (NP), that represent potential sources of systematic biases: if inaccurate or wrong values
are assigned to some NPs, the shapes of the PDFs can be distorted, the estimators of POIs can become
biased. The systematic uncertainties due to NPs are usually classified in two categories.

The first category refers to “Type-I” errors, for which the sample (or other control data samples)
can (in principle) provide information on the NPs under consideration, and are (in principle) supposed
to decrease with sample size. The second category refers to “Type-II” errors, which arise from incorrect
assumptions in the model (i.e. a choice of inadequate functional dependences in the PDFs), or uncon-
trolled features in data that can not be described by the model, like the presence of unaccounted species.
Clearly, for Type-II errors the task of assigning systematic uncertainties to them may not be well-defined,
and may spoil the statistical interpretation of errors in termos of confidence levels.

5.3.1 The profile-likelihod method
To deal with Type-I nuisance parameters, a popular approach is to use the so-called profile-likelihood
method. This approach consists of assigning a specific likelihood to the nuisance parameters, so that the
original likelihood is modified to have two different components:

L (µ, θ) = Lµ (µ, θ)Lθ (θ) . (79)

Then, for a fixed value of µ, the likelihood is maximized with respect to the nuisance θ; the sequencial
outcome of this procedure, called profile likelihood, is a function that depends only on µ: it is then said
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that the nuisance parameter has been profiled out of the likelihood.

As an example, consider the measurement of the cross-section of a generic process, σ (initial→ final).
If only a fraction of the processes is actually detected, the efficiency ε of reconstructing the final state is
needed to convert the observed event rate N̂event into a measurement σ̂. This efficiency is clearly a nui-
sance: a wrong value of ε directly affects the value of σ̂, regardless of how accurately N̂event may have
been measured. By estimating ε̂ on a quality control sample (for example, high-statistics simulation,
or a high-purity control data sample), the impact of this nuisance can be attenuated. For example, an
elegant analysis would produce a simultaneous fit to the data and control samples, so that the values and
uncertainties of NPs are estimated in the ML fit, and are correctly propagated to the values and variances
of the POIs.

As another example, consider the search for a resonance (“a bump”) over a uniform background.
If the signal fraction is very small, the width Γ of the bump cannot be directly estimated on data, and the
value used in the signal PDF has to be inferred from external sources. This width is clearly a nuisance:
using an overestimated value would translate into an underestimation of the signal-to-background ratio,
and thus an increase in the variance of the signal POIs, and possibly biases in their central values as
well, i.e. the signal rate would tend to be overestimated. Similar considerations can be applied in case
of underestimation of the width. If an estimation Γ̂ ± σ̂Γ of the width is available, this information can
be implemented as in Eq. (79), by using a Gaussian PDF, with mean value Γ̂ and width Γ̂, in the LΓ

component of the likelihood. This term acts as a penalty in the ML fit, and thus constraints the impact of
the nuisance Γ on the POIs.

6 Multivariate techniques
Often, there are large regions in sample space where backgrounds are overwhelming, and/or signals are
absent. By restricting the data sample to “signal-enriched” subsets of the complete space, the loss of
information may be minimal, and other advantages may compensate the potential losses: in particular
for multi-dimensional samples, it can be difficult to characterize the shapes in regions away from the
core, where the event densities are low; also reducing the sample size can relieve speed and memory
consumption in numerical computations.

The simplest method of sample reduction is by requiring a set of variables to be restricted into
finite intervals. In practice, such “cut-based” selections appear at many levels in the definition of sample
space: thresholds on online trigger decisions, filters at various levels of data acquisition, removal of
data failing quality criteria... But at more advanced stages of a data analysis, such “accept-reject” sharp
selections may have to be replaced by more sophisticated procedures, generically called multivariate
techniques.

A multi-dimensional ML fit is an example of a multivariate technique. For a MLE to be considered,
a key requirement is to ensure a robust knowledge of all PDFs over the space of random variables.

Consider a set of n random variables ~x = {x1, x2 . . . , xn}. If all variables are shown to be un-
correlated, their n-dimensional PDF is completely determined by the product of their n one-dimensional
PDFs; now, if variables are correlated, but their correlation patterns are completely linear, one can in-
stead use variables ~y, linear combinations of ~x obtained by diagonalizing the inverse covariance. For
some non-linear correlation patterns, it may be possible to find analytical descriptions; for instance, the
(mildly) non-linear correlation pattern represented in Figure 2, was produced with the RooFit package,
by applying the Conditional option in RooProdPdf to build a product of PDFs. In practice, this ele-
gant approach cannot be easily extended to more than two dimensions, and is not guaranteed to reproduce
complex, non-linear patterns. In such scenarios, the approach of dimensional reduction can potentially
bring more effective results.

A typical scenario for dimensional reduction is when several variables carry common information
(and thus exhibit strong correlations), together with some diluted (but relevant) pieces of independent in-
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formation. An example is the characterization of showers in calorimeters; for detectors with good trans-
verse and/or longitudinal segmentation, the signals deposited in nearby calorimetric channels can be used
to reconstruct details from the shower development; for example, a function that combines informations
from longitudinal and transverse shower shapes, can be used to discriminate among electromagnetic and
hadronic showers.

The simplest algorithm for dimensional reduction is the Fisher discriminant: it is a linear func-
tion of variables, with coefficients adjusted to match an optimal criterion, called separation among two
species, which is is the ratio of the variance between the species to the variance within the species, and
can be expressed in a close, simple analytical form.

In presence of more complex, non-linear correlation patterns, a large variety of techniques and
tools are available. The TMVA [14] package is a popular implementation of dimensional-reduction
algorithms; other than linear and likelihood-based discriminants, it provides easy training and testing
methods for artificial neural networks and (boosted) decision trees, which are among those most often
encountered in HEP analyses. As a general rule, a multivariate analyzer uses a collection of variables,
realized on two different samples (corresponding to “signal” and “background” species), to perform
a method-dependent training, guided by some optimization criteria; then performances of the trained
analyzer are evaluated on independent realizations of the species (this distinction between the training
and testing stages is crucial to avoid “over-training” effects). Figure 14 shows a graphical representation
of a figure-of-merit comparison of various analyzers implemented in TMVA.

Fig. 14: A figure-of-merit comparison between various different multivariate analyzer methods using the TMVA
package. The training was performed on two simulated samples (“signal” and “background”), each consisting
of four linearly correlated Gaussian-distributed variables. The various lines indicate the trade-off between signal
efficiency and background rejection. The figure is taken from [14].

7 Statistical hypothesis testing
Sections 3 and 5 mainly discussed procedures for extracting numerical information from data samples;
that is, to perform measurements and report them in terms of values and uncertanties. The next step in
data analysis is to extract qualitative information from data: this is the domain of statistical hypothesis
testing. The analytical tool to assess the agreement of an hypothesis with observations is called a test
statistic, (or a statistic in short); the outcome of a test is given in terms of a p-value, or probability of a
“worse” agreement than the one actually observed.
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7.1 The χ2 test
For a set of n independent measurements xi, their deviation with respect to predicted values µi, expressed
in units of their variances σi is called the χ2 test, and is defined as

χ2 =

n∑

i=1

(
xi − µi
σi

)2

. (80)

An ensemble of χ2 tests is a random variable that, as mentioned in Section 4.2, follows the Pχ2 distribu-
tion (c.f. Eq. 61) for n degrees of freedom. Its expectation value is n and its variance 2n; therefore one
does expect the χ2 value observed in a given test not to deviate much from the number of degrees of free-
dom, and so this value can be used to probe the agreement of prediction and observation. More precisely,
one expects 68% of tests to be contained within a n ±

√
2n interval, and the p-value, or probability of

having a test with values larger than a given χ2 value is

p =

∫ +∞

χ2

dq Pχ2 (q;n) . (81)

Roughly speaking, one would tend to be suspicious of small observed p-values, as they may indicate a
trouble, either with the prediction or the data quality. The interpretation of the observed p-value (i.e. to
decide whether it is too small or large enough) is an important topic, and is discussed below in a more
general approach.

7.2 General properties of hypothesis testing
Consider two mutually excluding hypotheses H0 and H1, that may describe some data sample; the
hypothesis testing procedure states how robust isH0 to describe the observed data, and how incompatible
is H1 with the observed data. The hypothesis H0 being tested is called the “null” hypothesis, while H1

is the “alternative” hypothesis,

Note that in the context of the search for a (yet unknown) signal, the null H0 corresponds to a
“background-only” scenario, and the alternative H1 to “signal-plus-background”; while in the context of
excluding a (supposedly inexistent) signal, the roles of the null and alternative hypotheses are reversed:
the null H0 is “signal-plus-background” and the alternative H1 is “background-only”.

The sequence of a generic test, aiming at accepting (or rejecting) the null hypothesis H0 by con-
fronting it to a data sample, can be sketched as follows:

– build a test statistic q, that is, a function that reduces a data sample to a single numerical value;
– define a confidence interval W → [qlo : qhi];
– measure q̂;
– if q̂ is contained in W , declare the null hypothesis accepted; otherwise, declare it rejected.

To characterize the outcome of this sequence, two criteria are defined: a “Type-I error” is incurred in, if
H0 is rejected despite being true; while a “Type-II error” is incurred in, if H0 is accepted despite being
false (and thus H1 being true). The rates of Type-I and Type-II errors are called α and β respectively,
and are determined by integrating the H0 and H1 probability densities over the confidence interal W ,

1− α =

∫

W
dqP (q|H0) ,

β =

∫

W
dqP (q|H1) . (82)

The rate α is also called “size of the test” (or size, in short), as fixing α determines the size of the
confidence interval W . Similarly, 1 − β is also called “power”. Together, size and power characterize
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the performance of a test statistic; the Neyman-Pearson lemma states that the optimal statistic is the
likelihood ratio qλ,

qλ (data) =
L (data|H0)

L (data|H1)
. (83)

The significance of the test is given by the p-value,

p =

∫ +∞

q̂
dqP (q|H0) . (84)

which is often quoted in terms of “sigmas”,

p =

∫ +∞

nσ
dz

1√
2π
e−z

2/2 = 1− 1

2
erf

(
n√
2

)
, (85)

so that for example a p < 0.0228 outcome can be reported as a “two-sigma” effect. Alternatively, it is
common practice to quote the complement of the p-value as a confidence level (C.L.).

The definition of a p-value as in Eq. (84) (or similarly in Eq. (81) for the example for a χ2 test)
is clear and unambiguous. But interpretation of p-values is partly subjective: the convenience of a
numerical “threshold of tolerance” may depend on the kind of hypothesis being tested, or on common
practice. In HEP usage, three different traditional benchmarks are conventionally employed:

– in exclusion logic, a 95% C.L. threshold on a signal-plus-background test to claim exclusion;
– in discovery logic, a three-sigma threshold (p < 1.35× 10−3) on a background-only test to claim

“evidence”;
– and a five-sigma threshold (p < 2.87× 10−7) on the background-only test is required to reach the

“observation” benchmark.

7.3 From LEP to LHC: statistics in particle physics
In experimental HEP, there is a tradition of reaching consensual agreement on the choices of test statistics.
The goal is to ensure that, in the combination of results from different samples and instruments, the
detector-related components (specific to each experiment) factor out from the physics-related observables
(which are supposed to be universal). For example in the context of searches for the Standard Model (SM)
Higgs boson, the four LEP experiments agreed on analyzing their data using the following template for
their likelihoods:

L (H1) =

Nch∏

a=1

PPoisson (na, sa + ba)

na∏

j=1

saSa( ~xj) + baBa( ~xj)
sa + ba

,

L (H0) =

Nch∏

a=1

PPoisson (na, ba)

na∏

j=1

Ba( ~xj) . (86)

whereNch is the number of Higgs decay channels studied, na is the observed number of event candidates
in channel a, Sa and sa (Ba and ba) are the PDF and event yield for the signal (background) species in
that channel. Also, the test statistic λ, derived from a likelihood ratio, is

λ = −2 lnQ , with Q =
L (H1)

L (H0)
; (87)

so that roughly speaking, positive values of λ favour a “background-like” scenario, and negative ones are
more in tune with a “signal-plus-background” scenario; values close to zero indicate poor sensitivity to
distinguish among the two scenarios. The values use to test these two hypotheses are:
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– under the background-only hypothesis, CL(b) is the probability of having a −2 lnQ value larger
than the observed one;

– under the signal+plus+background hypothesis, CL(s + b) is the probability of having a −2 lnQ
value larger than the observed one.

Figure 15 shows, for three different Higgs mass hypotheses, the −2 lnQ values from the combination of
the four LEP experiments in their searches for the SM Higgs boson, overlaid with the expected CL(s+b)
and 1 − CL(b) distributions. Figure 16 shows the evolution of −2 lnQ values as a function of the
hypothetized Higgs boson mass; (as stated in the captions, the color conventions in the one- and two-
dimensional plots are different) note that for masses below ∼ 115 GeV, a positive value of the −2 lnQ
test statistic would have provided evidence for a signal; and sensitivity is quickly lost above that mass.
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Fig. 15: Combined results from the search for a SM Higgs boson, performed by the four LEP experiments. From
left to right, the mH = 110, 115, 120 GeV hypotheses for the Higgs mass are used. The dashed blue and dashed
red lines correspond to the PDFs for the background-only and signal-plus-background hypotheses, respectively.
The observed values of the test statistic −2 lnQ are marked by black vertical lines. The yellow areas indicate the
1 − CL(b) values for the background-only hypothesis, and the green areas the CL(s + b) value for signal-plus-
background. The three figures are taken from [17].

7.3.1 The modified CL(s) hypothesis testing
The choice of CL(s + b) to test the signal-plus-background hypothesis, while suitably defined as a p-
value. may drag some subjective concern: in case of a fortuitous simultaneous downward fluctuation in
both signal and background, the standard 95% benchmark may lead to an exclusion of the signal, even if
the sensitivity is poor.

A modification of the exclusion benchmark called CL(s), has been introduced in this spirit [18],
and is defined as

CL(s) =
CL(s+ b)

1− CL(b)
. (88)

This test, while not corresponding to a p-value (a ratio of probabilities is not a probability), has the de-
sired property of protecting against downwards fluctuations of the background, and is commonly used
in exclusion results, including the searches for the SM Higgs boson from the Tevatron and LHC experi-
ments.
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Fig. 16: The test statistic −2 lnQ as a function of the Higgs boson mass mH , obtained by combining the data of
the four LEP experiments. The dashed line is the mean value of the background-only distribution at each mass
mH , and the green and yellow areas represent 68% and 95% contours for the background-only distribution at each
mass mH . The black line follows the −2 lnQ value observed in data as a function of mH . Figure taken from [17].

7.3.2 Profiled likelihood ratios
Following the recommendations from the LHC Higgs Combination Group [19], the ATLAS and CMS
experiments have agreed on using a common test statistic, called profiled likelihood ratio and defined as

q̃µ (µ) = −2 ln
L
(
µ,

ˆ̂
θ
)

L
(
µ̂, θ̂
) , with 0 ≤ µ̂ ≤ µ , (89)

where the PIO µ = σ/σSM is the “signal strength modifier”, or Higgs signal rate expressed in units of

the SM predicted rate, ˆ̂
θ are the fitted values of the NPs at fixed values of the signal strength, and µ̂ and

θ̂ are the fitted values when both µ and NPs are all free to vary in the ML fit 2. The lower constraint
on 0 ≤ µ̂ ≤ µ ensures that the signal rate is positive, and the upper constraint imposes that an upward
fluctuation would not disfavor the SM signal hypothesis.

For an observed statistic value ˆ̃qµ, the p-values for testing the signal-plus-background and background-
only hypotheses, p(s+ b) and p(b), are

p(s+ b) =

∫ ∞
ˆ̃qµ

dqP
(
q;µ = µ̂, θ̂

)
, (90)

1− p(b) =

∫ ∞
ˆ̃qµ

dqP
(
q;µ = 0,

ˆ̂
θ
)
. (91)

2The test statistic actually reported in [19] is slightly different than the one described here, but in the context of these notes
this subtlety can be disregarded.
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and the results on searches are reported both in terms of the exclusion significance using the CL(s)
observed and expected values, and the observation significance expressed in terms of the “local” 3 p(b)
expected and observed values.

To conclude the discussion on hypothesis testing, there is certainly no better illustration than Fig-
ure 17, taken from the results announced by the ATLAS and CMS experiments on July 4th, 2012: in the
context of the search for the SM Higgs boson, both collaborations established the observation of a new
particle with a mass around 125 GeV.
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Fig. 17: The expected distributions and observed values for the exclusion (left) and the observation significances
(right) in searches for the SM Higgs boson presented by the ATLAS [21] (top) and CMS [22] (bottom) collabora-
tions on July 4th, 2012. Both experiments find a significant excess around 125 GeV.

8 Conclusions
These lectures aimed at providing a pedagogical overview of probability and statistics. The choice of
topics was driven by practical considerations, based on the tools and concepts actually encountered
in experimental high-energy physics. A bias in the choices, induced by the author’s perspective and
personal experience is not to be excluded. The discussion was completed with examples from recent
results, mostly (although not exclusively) stemming from the B-factories and the LHC experiments.

3In short, the observation significance must be corrected for the trials factor, or “look-elsewhere effect”; in the case of
the search for the SM Higgs boson in a wide Higgs mass interval, this effect translates into a decrease of the significance, as
different Higgs masses are tested using independent data, and thus the probability of observing a signal-like fluctuation depends
on the mass interval studied and the experimental resolution.
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