Uma Breve Introdução ao Monte Carlo

© Large Hadron Collider/CMS

Uma Breve Introdução ao Monte Carlo

- Introdução
- Histórico
- Método da Rejeição Simples
- Algumas Aplicações Simples
 - Cálculo de integrais
 - Geração de eventos
- Referências

Introdução

- O que é?
 - Métodos a Monte Carlo são algorítimos numéricos que se utilizam da geração de números aleatórios

• É aplicado em diferentes áreas da física para resolver diferentes problemas

Histórico

Georges-Louis Leclerc, Comte de Buffon

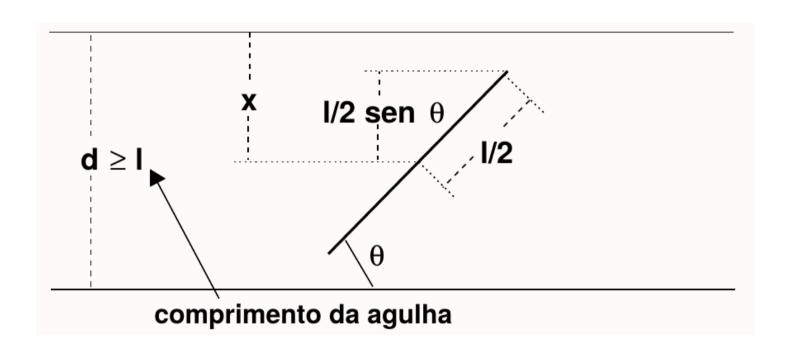
- Cientista francês do século XVIII

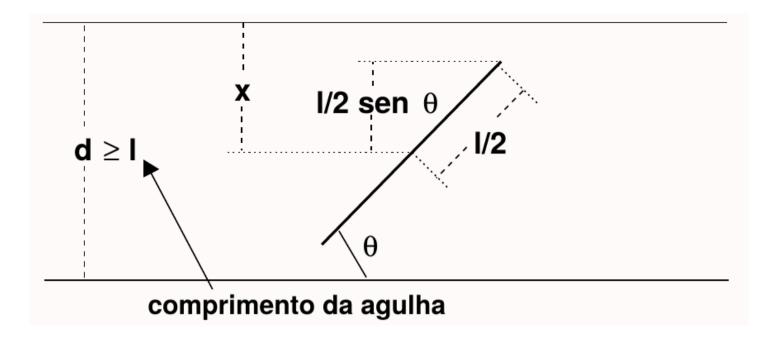
- Determina o valor de π através de lançamentos

aleatórios de uma agulha

Histórico – O Experimento de Buffon

 Determinar o valor de π a partir do lançamento de uma agulha de comprimento l sobre um folha de papel, onde foram traçadas linhas

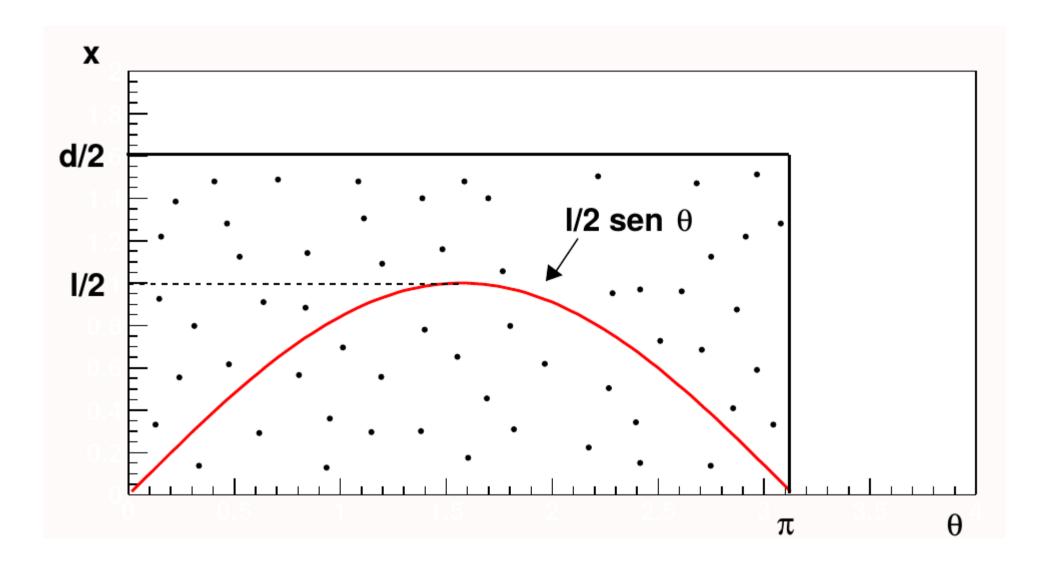




- x e θ configuram a posição espacial da agulha
- logo lançamentos da agulha são como sortear valores aleatórios de x e θ
- a agulha só interceptará alguma linha se:

$$x \leq (\ell/2) \operatorname{sen} \theta$$

• Espaço de configuração:



•	Probabilidad	de, <i>a priori,</i> c	de a agulha i	interceptar a	alguma linha	a:

• Probabilidade, a priori, de a agulha interceptar alguma linha:

$$p = \frac{I}{A} = \frac{2}{\pi} \frac{\ell}{d}$$

• Probabilidade, a priori, de a agulha interceptar alguma linha:

$$p = \frac{I}{A} = \frac{2}{\pi} \frac{\ell}{d}$$

• Probabilidade, *a posteriori*, de a agulha interceptar alguma linha:

• Probabilidade, a priori, de a agulha interceptar alguma linha:

$$p = \frac{I}{A} = \frac{2}{\pi} \frac{\ell}{d}$$

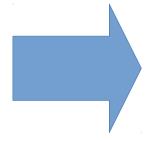
Probabilidade, a posteriori, de a agulha interceptar alguma linha:

$$p = m/N$$

onde m é o número de interceptações em N lançamentos

Logo:

$$\frac{2}{\pi} \frac{\ell}{d} = \frac{m}{N}$$



$$\pi = \left(\frac{2N}{m}\right) \left(\frac{\ell}{d}\right)$$

Logo:

$$\frac{2}{\pi}\frac{\ell}{d} = \frac{m}{N}$$

$$\pi = \left(\frac{2N}{m}\right)\left(\frac{\ell}{d}\right)$$

Exercício: Estimar π para N = 10, 50, 100, 1000

Histórico

 Durante a Segunda Grande Guerra Stanisław Ulam estudou a possibilidade de utilizar o método da simulação durante seu trabalho com armas nucleares em Los Alamos

 O nome do método vem do Monte Carlo Cassino, onde o tio de Ulam perdia dinheiro em jogos de apostas

Método da Rejeição Simples

 Obter uma distribuição de números aleatórios segundo uma dada função f(x)

Método da Rejeição Simples

 Obter uma distribuição de números aleatórios segundo uma dada função f(x)

 Pode ser encarado como uma sequência de tentativas de acertar um alvo, a partir de disparos aleatórios distribuídos uniformemente em uma região

Método da Rejeição Simples

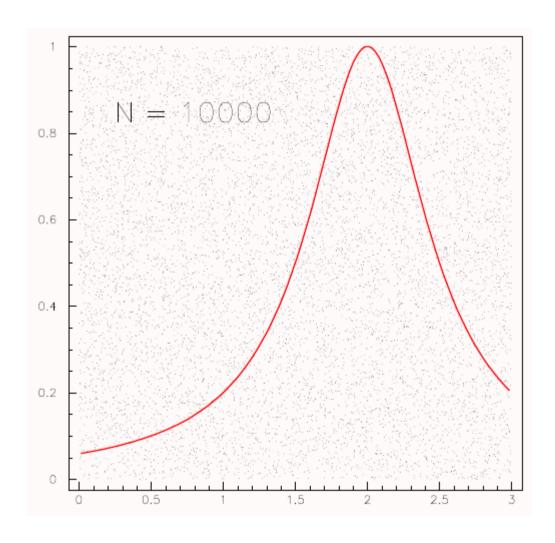
 Obter uma distribuição de números aleatórios segundo uma dada função f(x)

 Pode ser encarado como uma sequência de tentativas de acertar um alvo, a partir de disparos aleatórios distribuídos uniformemente em uma região

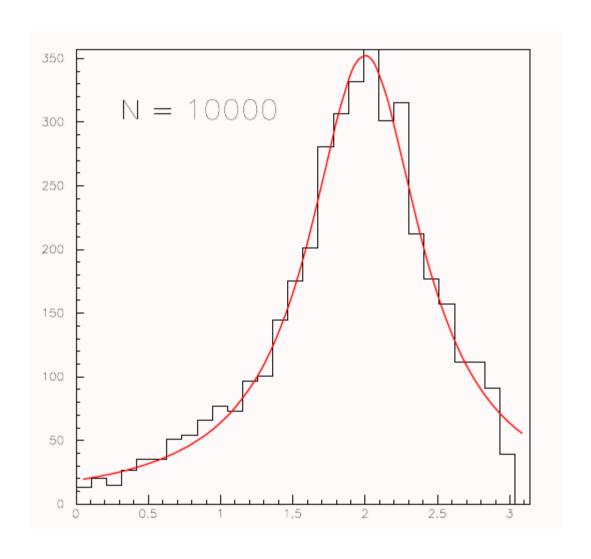
 A condição para que um ponto genérico (x,y) esteja na região limitada pela curva f(x) é dada por:

$$y \le f(x)$$

• Um exemplo:



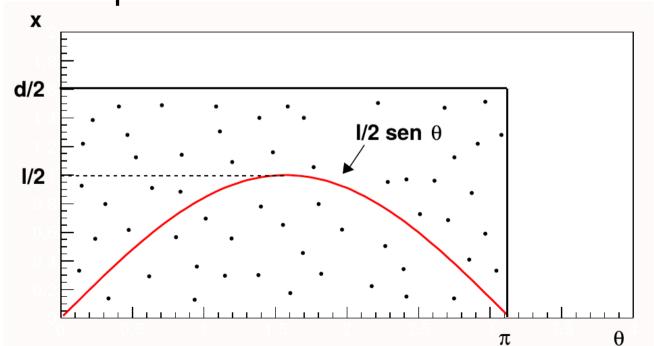
• Um exemplo:



- Cálculo de integrais
 - Pode ser usado o método de rejeição simples
 - Uma integral definida nada mais é do que o cálculo de uma área

- Cálculo de integrais
 - Pode ser usado o método de rejeição simples
 - Uma integral definida nada mais é do que o cálculo de uma área

- Por exemplo:



 Calcular a área da função f(x) = (l/2)sen(θ) no intervalo de 0 a π

- Calcular a área da função f(x) = (I/2)sen(θ) no intervalo de 0 a π
- Podemos gerar pontos aleatórios genéricos (x,y)

- Calcular a área da função f(x) = (I/2)sen(θ) no intervalo de 0 a π
- Podemos gerar pontos aleatórios genéricos (x,y)
- A partir do teste de rejeição simples, aceitamos os m pontos abaixo da curva, após N lançamentos

- Calcular a área da função f(x) = (I/2)sen(θ) no intervalo de 0 a π
- Podemos gerar pontos aleatórios genéricos (x,y)
- A partir do teste de rejeição simples, aceitamos os m pontos abaixo da curva, após N lançamentos
- Semelhante ao problema de Buffon, o valor da integral definida será dado por:

$$I = A \frac{m}{N}$$

onde A é a área do retângulo definido previamente

- Calcular a área da função f(x) = (I/2)sen(θ) no intervalo de 0 a π
- Podemos gerar pontos aleatórios genéricos (x,y)
- A partir do teste de rejeição simples, aceitamos os m pontos abaixo da curva, após N lançamentos
- Semelhante ao problema de Buffon, o valor da integral definida será dado por:

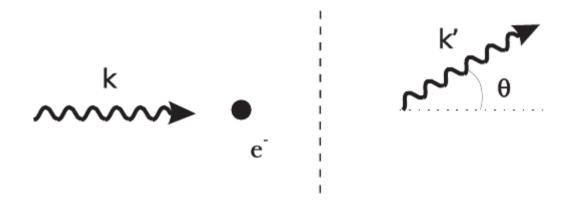
$$I = A \frac{m}{N}$$

onde A é a área do retângulo definido previamente Exercício:Fazer um programa que resolva integrais definidas usando o método

Geração de Eventos

- Exemplos:
 - Espalhamento Compton
 - Espalhamento de Rutherford

Espalhamento Compton



$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2m^2} \left(\frac{k'}{k}\right)^2 \left(\frac{k'}{k} + \frac{k}{k'} - \sin^2\theta\right)$$

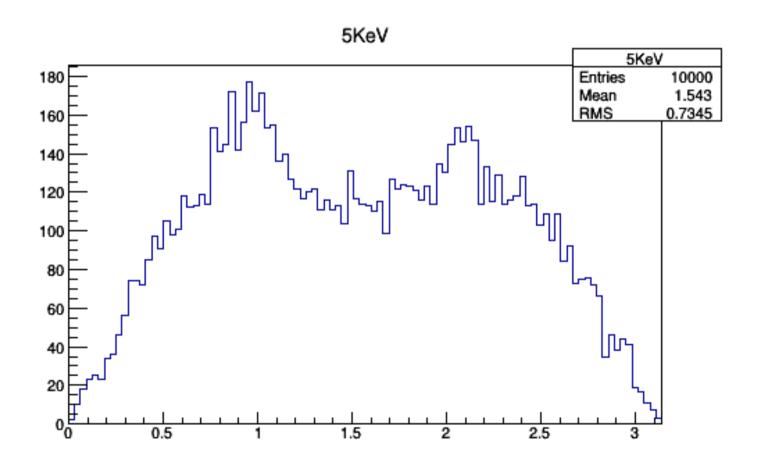
$$k' = \frac{k}{1 + (k/m)(1 - \cos \theta)}$$

Espalhamento Compton

```
#include "TMath.h'
     #include <iostream>
     #include "TRandom.h"
     #include "TH1.h"
     #include <math.h>
     using namespace std;
8
     Double t m = 0.511:
     Double t k:
     Int t nexp = 10000;
10
11
     Int t cont = 0;
12
13
                               usar o método da rejeição
     ////////
                                                                             ////////
14
     /////// f(x) = (((1/(1+0.01*(1-cos(x))))^2)*(((1/(1+0.01*(1-cos(x)))))+(1+0.01*(1-cos(x))))-sin(x)*sin(x))*sin(x) ///////
15
     16
17
    □void theta() {
18
     TFile f("histo2.root", "recreate");
19
     TH1D * h1 = new TH1D("5KeV","5KeV",100,0,3.141);
20
21
22

\Box \mathbf{for}
 (Double t j = 0; j < nexp; j++) {
23
         for (Double t i = 0; i < 1200; i++) {
24
                                                                    //Rejeição
            Double t zz = 1.076*(qRandom->Rndm());
25
            Double t x = 3.14*(qRandom->Rndm());
26
27
         if (zz \le ((pow((1/(1+0.01*(1-cos(x)))),2))*(((1/(1+0.01*(1-cos(x)))))+(1+0.01*(1-cos(x))))-sin(x)*sin(x))*sin(x))*i=1200;
28
         h1->Fill(x);
29
30
31
32
     h1->Write();
33
34
     cout << cont << endl;
35
     cont = cont + 1;
36
37
38
```

Espalhamento Compton



Espalhamento de Rutherford

$$rac{d\sigma}{d\Omega} = \left(rac{e^2}{8\pi\epsilon_0 m v_0^2}
ight)^2 rac{1}{\sin^4(heta/2)}.$$

Espalhamento de Rutherford

Exercício: Fazer uma simulação a Monte Carlo a qual gere eventos de espalhamento de Rutherford e construir o histograma da distribuição angular

Referências

Notas de aula do professor Oguri

Notas Técnicas CBPF-NT-001/01