
ROOT
Part 1

Introduction

ROOT

ROOT can be seen as a collection of building blocks for various activities, like:

★ Data analysis: histograms, graphs, functions
★ I/O: row-wise, column-wise storage of any C++ object
★ Statistical tools (RooFit/RooStats): rich modeling and statistical inference
★ Math: non-trivial functions (e.g. Erf, Bessel), optimised math functions
★ C++ interpretation: full language compliance
★ Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural Nets
★ Advanced graphics (2D, 3D, event display)
★ Declarative Analysis: RDataFrame
★ And more: HTTP servering, JavaScript visualisation

https://github.com/root-project/root

https://github.com/root-project/root

ROOT applications

Event Filtering

Data RecoRaw
Analysis
Formats… Plots

Data Storage: Local, Network

Reconstruction

Further
processing,
skimming

Offline Processing

Analysis

Event
Selection,
statistical

treatment …

A selection of the
experiments
adopting ROOT

LHC data in ROOT format

~1EB
as of 2019

https://root.cern

★ ROOT web site: the source of
information and help for ROOT users
○ For beginners and experts
○ Downloads, installation instructions
○ Documentation of all ROOT classes
○ Manuals, tutorials, presentations
○ Forum
○ ...

Resources

★ ROOT Website: https://root.cern
★ Training: https://github.com/root-project/training
★ More material: https://root.cern/getting-started

○ Includes a booklet for beginners: the “ROOT Primer”
★ Reference Guide:

https://root.cern/doc/master/index.html
★ Forum: https://root-forum.cern.ch

https://root.cern
https://github.com/root-project/training
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://root-forum.cern.ch

Installation from source

★ Get the ROOT sources:
○ git clone http://github.com/root-project/root
○ Or visit https://root.cern.ch/content/release-61600

★ Create a build directory and configure ROOT:
○ mkdir rootBuild; cd rootBuild
○ cmake ../root
○ https://root.cern.ch/building-root for all the config options

★ Start compilation
○ make -j

★ Prepare environment:
○ . bin/thisroot.sh

Expert Level

http://github.com/root-project/root
https://root.cern.ch/content/release-61600
https://root.cern.ch/building-root

ROOT prompt and Macros

User Interfaces

.q Quit

.L macro.C Load a macro file

.x macro.C Load and execute macro file

.x macro.C++ Compile and execute

The ROOT prompt

★ C++ is a compiled language
○ A compiler is used to translate source code into machine instructions

★ ROOT provides a C++ interpreter
○ Interactive C++, without the need of a compiler, like Python, Ruby,

Haskell …
■ Code is Just-in-Time compiled!

○ Allows reflection (inspect layout of classes at runtime)
○ Is started with the command:

○ The interactive shell is also called “ROOT prompt” or “ROOT interactive
prompt”

root

Controlling ROOT

★ Special commands which are not C++ can be typed at the
prompt, they start with a “.”

★ For example:
○ To quit root use .q
○ To issue a shell command use .! <OS_command>
○ To load a macro use .L <file_name> (see following slides about macros)
○ .help or .? gives the full list

root [1] .<command>

ROOT as a calculator

Here we make a step forward.
We declare variables and use a for
control structure.

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09

Interactivity

root [0] #include "a.h"
root [1] A o("ThisName"); o.printName()
ThisName
root [1] dummy()
(int) 42 # include <iostream>

 class A {
 public:
 A(const char* n) : m_name(n) {}
 void printName() { std::cout << m_name << std::endl; }
 private:
 const std::string m_name;
 };

 int dummy() { return 42; }

a.h

ROOT macros

★ We have seen how to interactively type lines at the prompt
★ The next step is to write “ROOT Macros” – lightweight programs
★ The general structure for a macro stored in file MacroName.C is:

void MacroName() {
 < ...
 your lines of C++ code
 ... >
}

Function, no main, same name as the file

Unnamed ROOT macros

★ Macros can also be defined with no name

★ Cannot be called as functions!
○ See next slide :)

{
 < ...
 your lines of C++ code
 ... >
}

Running a macro

★ A macro is executed at the system prompt by typing:

★ or executed at the ROOT prompt using .x:

★ or it can be loaded into a ROOT session and then be run by typing:

> root MacroName.C

> root
root [0] .x MacroName.C

root [0] .L MacroName.C
root [1] MacroName();

Interpretation and Compilation

▶ We have seen how ROOT interprets and “just in time compiles” code.
ROOT also allows to compile code “traditionally”. At the ROOT
prompt:

root [1] .L macro1.C+
root [2] macro1()

int main() {
 ExampleMacro();
 return 0;
}

> g++ -o ExampleMacro ExampleMacro.C `root-config --cflags --libs`
> ./ExampleMacro

Generate shared library
and execute function

Advanced Users

Conventions
ROOT uses a set of coding conventions:

★ Classes begin with T
★ Non-class types end with _t
★ Member functions begin with a capital
★ Constants bekin with k
★ Global variables begin with g
★ Getters and setters begin with Get and Set
★ Predefined types in ROOT:

○ Int_t, Float_t, Double_t, Bool_t, etc
○ You can, however, use also the C++ types: int, double, etc…

★ ROOT has a set of global variables that apply to the session
○ For example the single instance of TROOT is accessible via the global gROOT and hold

information relative to the current session:

gROOT->Reset();
gROOT->LoadMacro(“ftions.cxx”);
gSystem->Load(“libMyEvent.so”);

Sintax

TSomething* mything = new TSomething(stuff);

All ROOT classes
start with T:
TFile
TH1
TTree
TCanvas
...

Means make a
“pointer” (in the
case, of type
TSomething)

Name of
pointer

C++ operator
that allocates
memory

Initializes the
allocated memory
with whatever
“stuff” TSomething
requires

Many of the commands we will use will have this general form:
This is called a “constructor”

Note: In C++, if you you allocate memory using the “new” operator, you must later use “delete mything”
to release the memory… otherwise your code will have a memory leak.
We will not worry about that today, but keep it in mind for your future code-writing

For now, don’t worry about what a
pointer is. It’s not important for this
tutorial.

ROOTBooks

The Jupyter Notebook

A web-based interactive computing platform that combines code,
equations, text and visualisations.

Many supported languages: C++, Python, Haskell, Julia…
One generally speaks about a “kernel” for a specific
language

In a nutshell: an “interactive shell opened within the browser”

http://www.jupyter.org

http://www.jupyter.org

ROOT interfaces on Jupyter notebook

★ ROOT is well integrated with Jupyter Notebook, both for what concerns
its Python and C++ interface

★ What is Jupyter Notebook? https://jupyter.org/
○ Language of choice, share notebooks, interactive output, big data integration

★ How to integrate Jupyter notebook and ROOT:
○ Install ROOT6 (> 6.05)
○ Install dependencies: pip install jupyter metakernel
○ Set up the ROOT environment (.

$ROOTSYS/bin/thisroot.[c]sh) and then type in your shell:
root --notebook

https://jupyter.org/

How It Looks Like

Text

Code

Graphics

To execute the code,
click shift+enter

Let’s play with ROOT on Jupyter Notebook

You can fork to your GitHub account from:
https://github.com/ssilvado/ROOT-notebooks

The ROOT notebooks are based on the ROOT Primer
(https://root.cern.ch/guides/primer).

https://github.com/ssilvado/ROOT-notebooks
https://root.cern.ch/guides/primer

Histograms, Graphs and Functions

TCanvas

★ Canvases may be seen as windows.
★ In ROOT a graphical entity that contains graphical objects is called a Pad.

Histograms

★ Simplest form of data reduction
○ Can have billions of collisions, the Physics displayed in a few histograms
○ Possible to calculate momenta: mean, rms, skewness, kurtosis ...

★ Collect quantities in discrete categories, the bins
★ ROOT Provides a rich set of histogram types

○ We’ll focus on histogram holding a float per bin

1D Histograms: ROOT

★ 1D histogram: TH1F *name = new TH1F(“name”, “title”, bins, lowest bin,
highest bin);

Example:
h1 is an instance of a TH1F class

The Draw method display the histogram

1D Histograms: ROOT

★ 1D histogram: TH1F *name = new TH1F(“name”, “title”, bins, lowest bin,
highest bin);

Example:

2D Histograms: ROOT

★ 2D histogram: TH2F *name = new TH2F(“name”, “title”, xbins, low xbin, up
xbin, ybins, low ybin, up2 ybin);

★ Example:

TH2F *h12 = new TH2F(“h12”, “x vs y”, 100, -4, 4, 100, -4, 4);
h12->Fill(x,y);
h12->Draw();

3D Histograms: ROOT

★ 3D histogram: TH3F *name = new TH3F(“name”, “title”, xbins, low xbin, up
xbin, ybins, low ybin, up ybin, zbins, low zbin, up zbin);

★ Example:

TH3F *h123 = new TH3F(“h123”, “x vs y vs z”, 100, -4, 4, 100, -4, 4, 100, -4, 4);
h123>Fill(x,y,z);
h123->Draw();

Histograms properties

Command Parameters

GetMean() Mean

GetRMS() Root of Variance

GetMaximum() Maximum bin content

GetMaximumBin(int bin_number); Location of maximum

GetBinCenter(int bin_number); Center of bin

GetBinContent(int bin_number); Content of bin

Histogram cosmetics

h1.SetMarkerStyle();

h1.SetFillColor();

Histogram cosmetics: lines

h1.SetLineWidth();

h1.SetLineStyle();

Histogram Drawing Options

Graphs

★ Graphics object made of two arrays X and Y, holding the x, y coordinates of n
points

★ Display points and errors

★ Not possible to calculate momenta

★ Not a data reduction mechanism

★ Fundamental to display trends

★ Focus on TGraph and TGraphErrors classes in this course

Graph: example

AC*

AB

AF

AL

Superimpose two graphs

Graph with error bars

Functions

★ Mathematical functions are represented by the TF1 class
★ They have names, formulas, line properties, can be

evaluated as well as their integrals and derivatives
○ Numerical techniques for the time being

From the TGraphPainter documentation:
https://root.cern.ch/doc/master/classTGraphPainter.html

https://root.cern.ch/doc/master/classTGraphPainter.html

Functions

Can describe functions as:

★ Formulas (strings)
★ C++ functions/functors/lambdas

○ Implement your highly performant custom function

★ With and without parameters
○ Crucial for fits and parameter estimation

ROOT as a function plotter

★ The class TF1 represents one-dimensional functions (e.g. f(x)):

★ An extended version of this example is the definition of a function
with parameters:

Declare a pointer to an
object of type TF1.
The pointer’s name is f1

Name of the function,
Can be nearly anything Define the function using C-style math

x - is the evaluation variable

[0] and [1] - numbers in “[..]” are parameters, and
can be set externally.

ROOT as a function plotter

ROOT TFile and TTree

ROOT Command Line: Some Objects
Let’s open a file (histograms.root) and see what is inside

Declare a pointer to a TFile object
Create the object, it will point to (i.e. open the
file histograms.root)

Use the pointer “input” to list
its file’s contents with the
member operator “->” and
function “ls()”

There are two
histograms in this
file. Both are
object with
properties and
functions we can
use to display our
data

Declare a pointer to a TH1F object
Tell it to point to the object
“GausHist1d” stored in our file

https://drive.google.com/open?id=1BAy_ECTewsSG7cN5KOOxogA33qE2Mmes

ROOT TTree

★ A TTree is a data structure for organizing and manipulating several data
variables at once

★ Capable of drawing histograms on the fly including making selection cuts on
the data

★ Uses ROOT’s internal compression algorithms to reduce the data size
○ Very useful for data storage

ROOT Command Line: TTree Example

Create pointer
to “tree1”

Print structure of tree
to screen
This tree contains 7
variables:
event, ebeam,
px, py, pz, zv,
chi2

Draw scatter plot (py
vs px) for events with
ebeam > 150.

Turn on statistics box

ROOT TTree: More about Arguments

★ Arguments to many functions in ROOT objects are passed by character
strings

★ Strings are parsed for both logic and mathematics
★ For trees:

○ Any variable in the tree can be manipulated as part of an argument

root [10] mytree->Draw(“px:py”, “ebeam>150.0”, “lego”);

What to draw for each event
- Semicolon “:” indicates adding a new dimension
- Can be functions of variables: e.g. “sqrt(py)”
- Can be combinations of variables: e.g. “ebeam/px : py**2”

Selection cuts: i.e. which events or entries to draw
- Multiple cuts are allowed, combined with C-style logic operators
- Can be functions of variables
- Can be combinations of variables

Drawing options
Options for
n-dimensional
histograms go here as
in previous example

ROOT TTree: Use TTree to fill a histogram

★ Step 1: Define a histogram with a suitable range

★ Step 2: Project the TTree contents into the histogram

root [2] TH1F * h = new TH1F(“hBeamEnergy”, “Beam Energy”, 200, 148.0, 152.0);

root [3] mytree->Project(“hBeamEnergy”, “ebeam”, “px>10.0”);

Project into the NAME of a
histogram, not its pointer

Variable used to fill the projected histogram.
Make sure the dimensions of your histogram and your
projection are the same!

Optional cuts

ROOT TTree: Complicated cuts

★ Consider encapsulating your cuts as TCut objects
★ TCut objects can be combined using C-style operators as usual
★ They can be combined with other string cuts

root [14] TCut * px_plane = new TCut(“px / log(px*2 + py**2) > 0.10”);
root [15] TCut * py_plane = new TCut(“py / log(px*2 + py**2) > 0.10”);
root [16] mytree->Draw(“ebeam”, *px_plane && *py_plane);

Exercises

1. Create a function with parameters, p0 * sin (p1 * x) / x, and also draw it for different parameter values. Set
the colour of the parametric function to blue. After having drawn the function, compute for the parameter
values (p0 = 1, p1 = 2):

a. Function value for x=1
b. Function derivative for x=1
c. Integral of the function between 0 and 3

2. Suppose you have this set of points defined in the attached file graphdata.txt. Plot these points using the
TGraph class. Use as marker point a black box. Looking at the possible options for drawing the TGraph in
TGraphPainter, plot a line connecting the points. Make a TGraphError and display it by using the attached
data set, graphdata_error.txt, containing error in x and y.

3. Create a one-dimensional histogram with 50 bins between 0 to 10, and fill it with 10000 gaussian distributed
random numbers with mean 5 and sigma 2. Plot the histogram and, looking at the documentation in the
THistPainter, show in the statistic box the number of entries, the mean, the RMS, the integral of the
histogram, the number of underflows, the number of overflows, the skewness and the kurtosis.

4. Using the tree contained in tree.root make a distribution of the total momentum of each whose beam energy
was outside of the mean by more than 0.2. Use TCut objects to make your events selections. Project this
distribution into a histogram, draw it and save it to a file.

https://github.com/ssilvado/ROOT-notebooks/blob/master/data/graphdata.txt
http://root.cern.ch/root/html/TGraphPainter.html
https://github.com/ssilvado/ROOT-notebooks/blob/master/data/graphdata_error.txt
http://root.cern.ch/root/html/THistPainter.html/#HP07
https://github.com/ssilvado/ROOT-notebooks/blob/master/data/tree.root

Installing ROOT

★ You can install the ROOT's sources from the download area or using directly
the Git repository.

★ Install using Git repository:
Clone the repo
$ git clone https://github.com/root-project/root.git

Make a directory for building
$ mkdir build
$ cd build

Run cmake and make
$ cmake ../root
$ make -j8

Setup and run ROOT
$ source bin/thisroot.sh
$ root

https://github.com/root-project/root.git

Installing ROOT

★ You can install the ROOT's sources from the download area or using directly
the Git repository.

★ Install from the download area: Download the source from
http://root.cern.ch/drupal/content/downloading-root

Unpack tar file
$ tar zxvf root_6.20.xx.source.tar.gz

Create a directory for containing the build
$ mkdir root-build
$ cd root-build

Execute the cmake command on the shell
$ cmake
/Users/sheilamarass/Downloads/root-6.20
.04

After CMake has finished running, start the build
$ cmake --build .

Setup the environment to run
$ source
/Users/sheilamarass/root-build/bin/thisr
oot.sh

Atart ROOT interactive application
$root

http://root.cern.ch/drupal/content/downloading-root

A Little About C++

Object-Oriented Programming Concepts

★ Classes are an expanded concept of data structures: like data structures, they
can contain data members, but they can also contain functions as members

★ Object is an instantiation of a class. In terms of variables, a class would be
the type, and an object would be the variable.

★ Pointers is a variable that stores the memory address as its value.

class class_name{
 access_specifier_1: member1;
 access_specifier_2: member2;
 …
} object_names;

#include <iostream>
using namespace std;
class Rectangle
{

private:
int length;
int breadth;

public:
Rectangle(int l, int b)
{

length=l;
breadth=b;

}
int getArea()
{

return 2*length*breadth;
}

};

Object-Oriented Programming Concepts

★ Classes: the description of a “thing” in the system
★ Object : instance of a class
★ Methods: functions for a class

○ Members: a “has a” relationship to the class
○ Inheritance: an “is a” relationship to the class

The class constructor

★ A constructor constructs values of the class type. It is a member function
whose name is the same as the class name.

★ This process involves initializing data members and, frequently, allocating free
store using new.

★ A class constructor will have exact same name as the class and it does not
have any return type at all, not even void.

class TGraph : public TNamed, public TAttLine, public TAttFill, public TAttMarker {
...
 public:
 TGraph();
 TGraph(Int_t n);
 TGraph(Int_t n, const Int_t *x, const Int_t *y);
 TGraph(const TGraph &gr);

 virtual Double_t GetErrorX(Int_t bin) const;
 virtual Double_t GetErrorY(Int_t bin) const;

….
};

For example: the Graph class (https://root.cern.ch/doc/master/TGraph_8h_source.html)

https://root.cern.ch/doc/master/classTGraph.html
https://root.cern.ch/doc/master/classTNamed.html
https://root.cern.ch/doc/master/classTAttLine.html
https://root.cern.ch/doc/master/classTAttFill.html
https://root.cern.ch/doc/master/classTAttMarker.html
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a16daaa7b596941b23915a1ac1be5b42c
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a16daaa7b596941b23915a1ac1be5b42c
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a13c6713ae496caa8195647f76887f926
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a1380cd153a0fc78015dd604dbcb6c841
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html
https://root.cern.ch/doc/master/legend1_8C.html#a81e8067fc8f8d5a6217c06912ca906a0
https://root.cern.ch/doc/master/RtypesCore_8h.html#ab9b5334647b78ec4256db251e3ae1fc6
https://root.cern.ch/doc/master/classTGraph.html#afe3778d15496a7b7553bc4b7350709a2
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/RtypesCore_8h.html#ab9b5334647b78ec4256db251e3ae1fc6
https://root.cern.ch/doc/master/classTGraph.html#ac4bd6a7dd2e77c9ae13c63fd5ffb51c8
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b

Loops: C++

for (initialization expr; test expr; update expr)
{
 // body of the loop
 // statements we want to execute
}

Example:
int i=0;
for (i = 1; i <= 10; i++)
{
 printf("Hello World\n");
}

for

Loops: C++

initialization expression;
while (test_expression)
{
 // statements
 update_expression;
}

Example:
int i = 1; // initialization expression

while (i < 6) // test expression
{
 printf("Hello World\n");

 I++; // update expression
}

while

Loops: C++

initialization expression;
do
{
 // statements
 update_expression;
} while (test_expression);

Example:
int i = 2; // Initialization expression

do
{
 printf("Hello World\n");

 I++; // update expression
} while (i < 1); // test expression

do

if … then … else: ROOT

if (testExpression1)
{
 // statements to be executed if testExpression1 is true
}
else if(testExpression2)
{
 // statements to be executed if testExpression1 is false and testExpression2 is true
}
else if (testExpression 3)
{
 // statements to be executed if testExpression1 and testExpression2 is false and
testExpression3 is true
}
.
.
else
{
 // statements to be executed if all test expressions are false
}

Logical conditions:
A == B (A equal to B)
A != B (A not equal to B)
A && B (condition A and B)
A || B (condition A or B)
A >= B (A greater or equal than B)
A >=B (A greater than B)
A <= B (A less or equal than B)
A < B (A less than B)

Function: C++

type name(parameter1, parameter2, ...)
{

statements
}

A function is a block of code which only runs when it is called

Void functions are created and used just like value-returning functions except they do not
return a value after the functions executes.

● type is the type of the value returned by
the function

● name is the identifier by which the
function can be called

● parameters (as many as needed): each
parameter consists of a type followed by
an identifier.

● Statements is the function’s body

& and *
http://www.cplusplus.com/doc/tutorial/functions/

References

★ http://webhome.phy.duke.edu/~raw22/public/root.tutorial/basic_root_20100701.pdf

★ https://docs.google.com/presentation/d/1nNFRdh483KSYnoaA6q7x0nVeDPbhY7gjWyaGmr0ZdTA/edit#slid
e=id.g2a0483ea55_3_300

http://webhome.phy.duke.edu/~raw22/public/root.tutorial/basic_root_20100701.pdf
https://docs.google.com/presentation/d/1nNFRdh483KSYnoaA6q7x0nVeDPbhY7gjWyaGmr0ZdTA/edit#slide=id.g2a0483ea55_3_300
https://docs.google.com/presentation/d/1nNFRdh483KSYnoaA6q7x0nVeDPbhY7gjWyaGmr0ZdTA/edit#slide=id.g2a0483ea55_3_300

