DEPARTAMENTO DE FISICA NUCLEAR E ALTAS ENERGIAS

ROOT

Part 1

Introduction

ROOT

ROQOT can be seen as a collection of building blocks for various activities, like:

Data analysis: histograms, graphs, functions
I/0: row-wise, column-wise storage of any C++ object
Statistical tools (RooFit/RooStats): rich modeling and statistical inference
Math: non-trivial functions (e.g. Erf, Bessel), optimised math functions
C++ interpretation: full language compliance
Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural Nets
Advanced graphics (2D, 3D, event display)
Declarative Analysis: RDataFrame
And more: HTTP servering, JavaScript visualisation
¥ Unstar 595 Fork 433
O 22 176 contributors

L e b b b . b o

https://github.com/root-project/root

ROOT applications

A selection of the
experiments
adopting ROOT

T | —

Event Filtering

Offline Processing Event

Selection,
Further statistical
processing, treatment ...

Reconstruction skimming

Analysis
Formats

Data Storage: Local, Network

LHC data in ROOT format

~1EB

as of 2019

https://root.cern

* ROOT web site: the source of
information and help for ROOT users
o For beginners and experts
Downloads, installation instructions
Documentation of all ROOT classes
Manuals, tutorials, presentations
Forum

O O O O O

Download Documentation News Support About Development Contribute

o]
B]
i
\ "

1 the f s [
nalysis, visualisation and ‘
other s such & A

PO, =% the

Under the Spotlight
16-12-2015 Try the new ROOTbooks on Binder (beta)
Try the m ks on Binder (Seta) #! Use ROOT interactively in notebooks 05

a fore informat
15-09-2015 ROOT Users’ Workshop 2015
The next ROOT Users’ Workshop will celebrate ROOT's 20th anniversary It will
take place on 15-18 Sept 2015 in Saas-Fee, Switzeriand
03-09-2015 The New ROOT Website is Online!
The new ROOT website is online!

..........

Resources

- R . B o o

ROOT Website: https://root.cern
Training: https://github.com/root-project/training

More material: https://root.cern/getting-started
o Includes a booklet for beginners: the “ROOT Primer”

Reference Guide:
https://root.cern/doc/master/index.html
Forum: https://root-forum.cern.ch

https://root.cern
https://github.com/root-project/training
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://root-forum.cern.ch

Installation from source

* Get the ROOT sources:

o gitclone
o Orvisit

% Create a build directory and configure ROOT:
o mkdir rootBuild; cd rootBuild
o cmake ../root
0 for all the config options
% Start compilation
o make -j
% Prepare environment:
o . bin/thisroot.sh

http://github.com/root-project/root
https://root.cern.ch/content/release-61600
https://root.cern.ch/building-root

ROOT prompt and Macros

U Se r I nte rfa CeS @00 i) sheilamarass — root.exe — 80x24

?

sheilamarass@amaral: export ROOTSYS=root/

sheilamarass@amaral: export LD_LIBRARY_PATH=$RO0OTSYS/1ib:$LD_LIBRARY_PATH
sheilamarass@amaral: export PATH=$RO0OTSYS/bin:$PATH

sheilamarass@amaral: root

2

2

4
R AR TR T

3
3
3

WE'L:C-0:ME to ROOT

Version 5.34/36 5 April 2016

jocronca

You are welcome to visit our Web site
http://root.cern.ch

* * * * ¥ * * *
* XX * X H X R

ROOT 5.34/36 (v5-34-36@v5-34-36, Apr 05 2016, 10:25:45 on macosx64)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [0] J§
.q Quit
.L macro.C Load a macro file
.X macro.C Load and execute macro file
X macro.C++ Compile and execute

The ROOT prompt

% C++is a compiled language
o A compiler is used to translate source code into machine instructions

% ROOT provides a C++ interpreter

o Interactive C++, without the need of a compiler, like Python, Ruby,
Haskell ...

m Code is Just-in-Time compiled!
o Allows reflection (inspect layout of classes at runtime)
o |s started with the command:

root

o The interactive shell is also called “ROOT prompt” or “ROQOT interactive
prompt”

Controlling ROOT

% Special commands which are not C++ can be typed at the

imHn

prompt, they start with a “.

root [1] .<command>

% For example:;

To quit root use .q

To issue a shell command use .! <OS_ command>

To load a macro use .L <file_name> (see following slides about macros)
.help or .? gives the full list

O O O O

ROOT as a calculator

1ia: = 1 4 4o Lo+ aF & ...
53 root [@] double x=.5
— x’ll
g (double) 0.5
root [1] int N=30
Here we make a step forward. (int) 30

We declare variables and use a for
control structure.

root [2] double gs=0;

root [3] for (int i=@;i<N;++i) gs += pow(x,1)
root [4] std::abs(gs - (1/(1-x)))

(Double _t) 1.86265e-09

Interactivity

root [@] #include "a.h"
root [1] A o("ThisName"); o.printName()

ThisName a.h

root [1] dummy()
(int) 42 # include <iostream>
class A {
public:

A(const charx n) : m_name(n) {}

void printName() { std::cout << m_name << std::endl; }
private:

const std::string m_name;

13
int dummy() { return 42; }

ROOT macros

% We have seen how to interactively type lines at the prompt
% The next step is to write “ROOT Macros” - lightweight programs
% The general structure for a macro stored in file MacroName.C is:

Function, no main, same name as the file

void MacroName() {
<

your lines of C++ code

Unnamed ROOT macros

Y Macros can also be defined with no name

Y Cannot be called as functions!
o See nextslide)

your lines of C++ code

Running a macro

% A macro is executed at the system prompt by typing:

> root MacroName.C

% or executed at the ROOT prompt using .x:

> root

root [@] .x MacroName.C

% oritcan be loaded into a ROOT session and then be run by typing:

root [@] .L MacroName.C

root [1] MacroName();

Interpretation and Compilation

el We have seen how ROOT interprets and “just in time compiles” code.
ROOT also allows to compile code “traditionally”. At the ROOT

prompt: Generate shared library

root [1] L macrol.C+ /andexecutefunction
root [2] macrol()

int main() {

Advanced Users ExampleMacro();

return 0;
}

> g++ -0 ExampleMacro ExampleMacro.C "root-config --cflags --1libs"

> ./ExampleMacro

Conventions

ROQOT uses a set of coding conventions:

Classes begin with T

Non-class types end with _t

Member functions begin with a capital
Constants bekin with k

Global variables begin with g

Getters and setters begin with Get and Set gROOT->Reset(); |
gROOT->LoadMacro(“ftions.cxx”);

* b b b

Predefined types in ROOT: gSystem->Load(“libMyEvent.so”)
o Int_t, Float t, Double t, Bool t, etc
o You can, however, use also the C++ types: int, double, etc...

ROQOT has a set of global variables that apply to the session

o For example the single instance of TROOT is accessible via the global gROOT and hold
information relative to the current session:

*

Sintax

Many of the commands we will use will have this general form:

TSomething\mything =

/

All ROOT classes
start with T:

TFile

THA

TTree

TCanvas

Means make a
“‘pointer” (in the
case, of type
TSomething)

This is called a “constructor”
AN

4 _ R

TSomething(stuff);

Name of
pointer

For now, don’t worry about what a
pointer is. It's not important for this

tutorial.

Initializes the
allocated memory
with whatever
“stuff” TSomething
requires

Note: In C++, if you you allocate memory using the “new” operator, you must later use “delete mything”
to release the memory... otherwise your code will have a memory leak.
We will not worry about that today, but keep it in mind for your future code-writing

ROOTBooks

The Jupyter Notebook

A web-based interactive computing platform that combines code,
equations, text and visualisations.

Many supported languages: C++, Python, Haskell, Julia...
One generally speaks about a “kernel” for a specific
language

In a nutshell: an “interactive shell opened within the browser”
s
Jjupyter

http://www.jupyter.org

ROOT interfaces on Jupyter notebook

% ROOT is well integrated with Jupyter Notebook, both for what concerns
its Python and C++ interface

What is Jupyter Notebook? hitps://jupyter.org/
o Language of choice, share notebooks, interactive output, big data integration

* How to integrate Jupyter notebook and ROOT:
o Install ROOT6 (> 6.05)
o Install dependencies: pip install jupyter metakernel
o Set up the ROOT environment (.
SROOTSYS/bin/thisroot. [c]sh)and then type in your shell:

root —--notebook o o’ Ju pyter

https://jupyter.org/

How It Looks Like

Access TTree in Python using PyROOT and fill a histogram

Loop over the TTree called "events" in a file located on the web. The tree is accessed with the dot operator. Same holds for the access to the branches: no need to
set them up - they are just accessed by name, again with the dot operator.

In [1]: dimport ROOT

f = ROOT.TFile.Open("http://indico.cern.ch/event/395198/material/0/0.root");
h =

Tor it h Tvantes | e To execute the code,

for track in event.tracks:
h.Fill(track.Pt())

click shift+enter

h.Draw()
c.Draw()
Tracks
TracksPt
» Entries 499832
Mean 12.54
14000 StdDev 6.554

12000

10000

8000

6000

IIIIIIIIIIIIII[IIII'III

4000

2000

I SRR

60
Pt [GeV/c]

Let’s play with ROOT on Jupyter Notebook

You can fork to your GitHub account from:
https://qgithub.com/ssilvado/ROOT-notebooks

The ROOT notebooks are based on the ROOT Primer
(https://root.cern.ch/quides/primer).

https://github.com/ssilvado/ROOT-notebooks
https://root.cern.ch/guides/primer

Histograms, Graphs and Functions

TCanvas

% Canvases may be seen as windows.
% In ROOT a graphical entity that contains graphical objects is called a Pad.

cl =new Creates a new canvas with width equal to w
TCanvas(“c1”,"Title, w, h) number of pixels and height equal to h
number of pixels.

c1->Divide(2,2); Divides the canvas to 4 pads.
cl->cd(3) Select the 3 Pad
c1->SetGridx(); You can set grid along x and y axis.

c1->SetGridy();
c1->SetLogy(); You can also set log scale plots.

Histograms

% Simplest form of data reduction

o Can have billions of collisions, the Physics displayed in a few histograms
o Possible to calculate momenta: mean, rms, skewness, kurtosis ...

% Collect quantities in discrete categories, the bins
% ROOT Provides a rich set of histogram types

o We'll focus on histogram holding a float per bin

<2000

O E CMS Preliminary —4— S/B Wei
(51800F Vs=7TeV,L=5.11b" _E;BFF.':
N~ [Vs=8TeV,L=5.3fb" Dqg
©1600 =P

- 2 +2
1400

[T

[2]
£1200

TH1C | TH1D | | TH1F | | TH1I | | TH1K | | TH1S | | THe
i 1000
o 800F
i 9]

TProfile | Hec [[THaD | | THeF | [THat| | THePoly | [THes | [Thsc | | THaD | [THeF | [THal | [THes | & goob

(o)} C

o =

= 400E

TProfile2D | TGLTH3Compositon | | TProfile3D | 200

0’ uuuuuuuuuu

1D Histograms: ROOT

% 1D histogram: TH1F *name = new TH1F(“name”, “title”, bins, lowest bin,
highest bin);

h1 is an instance of a TH1F class
Example: A‘r’,,,,,,,fff

root [0@] TH1F *hl = new TH1F("hl", "x distribution", 100, -4, 4);
root [1l] hl-*FillRandom("gaus")

root [2] hl->Draw()

\

The Draw method display the histogram

1D Histograms: ROOT

% 1D histogram: TH1F *name = new TH1F(“name”, “title”, bins, lowest bin,
highest bin);

Example:

root [@] THIF *hl = new THIF("hl", "x distribution", 100,

root [1] hl-*FillRandom("gaus") x distribution m
root [2] hl->Draw() i Nean® 0.008147

RMS 1.015

1403—
1203—
1003—
805—
sof—
of

20—

2D Histograms: ROOT

% 2D histogram: TH2F *name = new TH2F(“name”, “title”, xbins, low xbin, up

xbin, ybins, low ybin, up2 ybin);
* Example:

TH2F *h12 = new TH2F(*h127, “*x vs y”, 100, -4, 4, 100, -4, 4);

h12->Fill(x,y);
h12->Draw();

h12

"| Entries 1000

Mean x 0.01516
Meany .0.05578
RMS x 1.01
RMS y 0.9883

3D Histograms: ROOT

t 13

% 3D histogram: TH3F *name = new TH3F(“name”, “title”, xbins, low xbin, up
xbin, ybins, low ybin, up ybin, zbins, low zbin, up zbin);

* Example:

TH3F *h123 = new TH3F("*h123”, “x vs y vs Zz", 100, -4, 4, 100, -4, 4, 100, -4, 4);

h123>Fill(x,y,z);

h123->Draw();

hi23 |

1000
an x 0.01516
ny -0.05578
2

,
/
z=z=zm

88z
3 3z

2
52

1.01
RMSy 0.9883
—{RMS z 1.953 |

Histograms properties

Command

GetMean()

GetRMS()

GetMaximum()
GetMaximumBin(int bin_number);
GetBinCenter(int bin_number);

GetBinContent(int bin_number);

Parameters

Mean

Root of Variance
Maximum bin content
Location of maximum
Center of bin

Content of bin

Histogram cosmetics

T T e T T

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

h1.SetMarkerStyle(); ‘ . A \ A8 \ z:j P St X +

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 N
| f \
I - |) X :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
AR

30

;\:"‘.7:. 2 -

20 21

h1.SetFillColor();

s
o
Ny | b

kMagenta

ROOT Color Wheel

lines

);

= -
= o)
S =,

et
=)
(D) (D)
je= je=
| |
ot ot
(D) (D)
n n
D wal D wal
e e

Histogram cosmetics

OCOONOITON Sir@is © 19 & DN =
e

Histogram Drawing Options

TH1F *hl = new TH1F{("hl", "x distribution", 100, -4, 4):

THIF *hlsame = new THIF{("hlsame",
hl->FillRandom{"gaus")

"x distribution", 106, -4, 4);

hlsame->*FillRandom("gaus")

hl->Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
hlsame->Draw ("same")

x:distribution _ " SAME": Superimpose on previous picture in the same pad.

Enies 5000| " CYL": Use cylindrical coordinates.
o 0%l " POL": Use polar coordinates.

"SPH": Use spherical coordinates.

" PSR": Use pseudo-rapidity/phi coordinates.

"LEGO": Draw a lego plot with hidden line removal.

160

140

120

i "LEGO1": Draw a lego plot with hidden surface removal.

& "LEGO2": Draw a lego plot using colors to show the cell contents.

60 " SURF": Draw a surface plot with hidden line removal.

b " SURF1": Draw a surface plot with hidden surface removal.

o " SURF2": Draw a surface plot using colors to show the cell contents.

i lg " SURF3": Same as SURF with a contour view on the top.
S e T L G R R " SURF4": Draw a surface plot using Gouraud shading.
“SURF5”: Same as SURF3 but only the colored contour is drawn.

J:-:‘III]lll]llllIIIIIIIIIIIIIIIIIIIIIII

19

Note: Please check chapter 3 in user’s guide to learn more about options.

Graphs

* % % % % %

Graphics object made of two arrays X
points
Display points and errors

Not possible to calculate momenta
Not a data reduction mechanism
Fundamental to display trends

Focus on TGraph and TGraphErrors

95% CL Limit on o/oSM

5.0fb" (7 TeV) + 19.8 fb™* (8 TeV) + 35.9 fb™' (13 TeV)
CMS Preliminary —— Do

----- Expected background only

-:10

- - - Expected (SM mu = 125 GeV)

||

120 121 122 123 124 125 126 127 128 129 130
my [GeV]

Graph: example

Int_t n=20;
Double t x[n]., v[n];
for{(Int_t i=0; i<n;

grl->Draw("AC*");

1++){ x[i]=1; w[1]1=1*1; }
TGraph *grl=new TGraph(n,x,y);

AC*

AB

Graph

AL

350| f
300| f
250| f
200| f
150 f

100~

Graph

Superimpose two graphs

[8] Int t n=10;

[1] Double_t x[n], y[n], x1[n], yl[n];

[2] for(Int_t i=0; i<n; i++){ x[i]=i; yl[il=sin(i); xLl[il=i; yl[il=cos(i); }
[3] TGraph ’*‘grl:new [Graph

[4] TGraph *gr2=new TGraph(n,xl,yl);

[5] grl->SetlineColor(4);

[6] gr2->SetlLineWidth(3);
[7] gr2->SetMarkerStyle(21);
[8] gr2->SetLineColor(2);
[9] grl->Draw("AC*");

in <TCanvas::MakeDefCanvas:>: created

[10] gr2->Draw("CF");

IIIIIIII

o
w0

1
-

eTTT I

Graph with error bars

root [@]

root [1] S

root [2] D 5 6 Ti 4

root [3]

root [4]

root [5] p

root [6] ﬂrl-fqunn)
"l
al—
6|— N
af- T
ol
O_I L L I 1 L L l L L L l L L L l L L L l L 1 L I L L

1
o
o

0 0.2 0.4 0.6 0.8

Functions

% Mathematical functions are represented by the TF1 class
% They have names, formulas, line properties, can be

evaluated as well as their integrals and derivatives
o Numerical techniques for the time being

TF1

~

"SAME" | superimpose on top of existing picture

g =y connect all computed points with a straight line TF12 TF2

et connect all computed points with a smooth curve T

"FC" draw a fill area below a smooth curve

TF3

From the TGraphPainter documentation:

https://root.cern.ch/doc/master/classTGraphPainter.html

Functions

Can describe functions as:

% Formulas (strings)
% C++ functions/functors/lambdas
o Implement your highly performant custom function

% With and without parameters

o Crucial for fits and parameter estimation

ROOT as a function plotter

% The class TF1 represents one-dimensional functions (e.g. f(x)):

Declare a pointer to an Name of the function, , _ ,
object of type TF1. Can be nearly anything Deflne the functlpn using C-style math
X - is the evaluation variable

The pointer’s name is f1 /

root [©@] TF1 Ff1{"Ff1","sin{x)/x",0@,,10,); //name, formula, min, max

root [1] fl.Draw{);

% An extended version of this example is the definition of a function

with pa rameters: [0] and [1] - numbers in “[..]” are parameters, and
can be set externally.

il ARG 2 S ERA e FL T Rt W e B R Sy Tl R s R

root [2] f2.SetParameters(2,2);
root [3] f2.Draw{):

ROOT as a function plotter

sin(x)/x

IIII]IIIIIII]IIIIIII]III

[O]"sin([1]"(x))/x

_IIIIIllllllllllllllllllll

ROOT TFile and TTree

ROOT Command Line: Some Objects

Let’s open a file (histograms.root) and see what is inside

Create the object, it will point to (i.e. open the

Declare a pointer to a TFile object file histograms.root)

root [0] .1s{)

root [1] TFile * input = new TFile{"histograms.root"); . o s \
o L T its file’s contents with the

TFile** histograms.root mem_ber“ope”rator ->" and
TFile* nistogrs function “Is()
GausHistld;1 One dimensional Gaussian Distribution

Use the pointer “input” to list

KEY : GausHist2d:; 1 Two dimensional Gaussian Distribution A

There are two
histograms in this

file. Both are
. . Tell it to point to the object object with
Declare a pointer to a TH1F object “GausHist1d” stored in our file properties and
\ functions we can
use to display our
root [3] [THIF * mylDhist |= (THIF*)input->Get("GausHistld"): data

root [4] mylDhist->Drawd);

https://drive.google.com/open?id=1BAy_ECTewsSG7cN5KOOxogA33qE2Mmes

ROOT TTree

% ATTree is a data structure for organizing and manipulating several data
variables at once

% Capable of drawing histograms on the fly including making selection cuts on
the data

* Uses ROOT’s internal compression algorithms to reduce the data size
o Very useful for data storage

Variables are stored in TBranches .
Tree /
Event# — Time Angle Energy — — -
|
— 37" — 106.5ns — 0.308 — 1.7GeV — + —

P n

ROOT Command Line: TTree Example

Troot [0] TFile *f TFile("tree.root");

root ebeam
tree.root Sy St o § 9 Create polnter 4000 r?%.i; Ul;g
Eiree o) " to “tree1”
ok 3000~
. 2500
e to screen .
16 a : i 5 ile 34514 * . .
- - This tree contains 7 tooof-
variables:
3 bytes ile ¢ 260330 *
bytes Compr on 1.47 ¥ event, ebeam, R Y Xy (R T T o o 155‘5-‘.,6
px, Py, Pz, 2V,
ch i2 px:py {ebeam=>150.0}
20}-
Turn on statistics box
10}
root [4] TCanvas *c2 = (: 300, 6OO);
root [5] c2->Divide(l,?2 %t
root [6] c2->cd{l); ik
root [7] gStyle->SetOptStat(
root [8] mytree->Draw("eb 2 Draw scatter plot (py 2of-
root [9] c2->cd(2); vs px) for events with WL -

g
b
=
of
=
S
&

root [10] mytree->Draw("px:py", "ebeam>150.0");

ebeam > 150. ‘ ' w

ROOT TTree: More about Arguments

% Arguments to many functions in ROOT objects are passed by character

strings

% Strings are parsed for both logic and mathematics
*

For trees:

o Any variable in the tree can be manipulated as part of an argument

root [10] mytree->Draw(“px:py” [“ebeam>1 50.0”J ‘lego™);

What to draw for each event

“.n

- Semicolon “:” indicates adding a new dimension
- Can be functions of variables: e.g. “sqrt(py)”
- Can be combinations of variables: e.g. “ebeam/px : py**2”

Drawing options
Options for
n-dimensional
histograms go here as
in previous example

Selection cuts: i.e. which events or entries to draw

- Multiple cuts are allowed, combined with C-style logic operators

- Can be functions of variables
- Can be combinations of variables

ROQOT TTree: Use TTree to fill a histogram

% Step 1: Define a histogram with a suitable range
root [2] TH1F * h = new TH1F(*hBeamEnergy”, “Beam Energy”, 200, 148.0, 152.0);

% Step 2: Project the TTree contents into the histogram

root [3] mytree->Project(“hBeamEnergy”, “ebeam”, “px>10.0");

/

Project into the NAME of a
histogram, not its pointer Optional cuts

v

Variable used to fill the projected histogram.
Make sure the dimensions of your histogram and your
projection are the samel!

ROOT TTree: Complicated cuts

% Consider encapsulating your cuts as TCut objects
% TCut objects can be combined using C-style operators as usual
% They can be combined with other string cuts
root [14] TCut * px_plane = new TCut(“px / log(px*2 + py**2) > 0.10%);

root [15] TCut * py_plane = new TCut(“py / log(px*2 + py**2) > 0.10”);
root [16] mytree->Draw(“ebeam”, *px_plane && *py plane);

ebeam {(px/log(px**2+py**2)>0.1)&&(py/log(px**2+py**2)>0.1)}

Mean
RMS 0.1491

T[T [T [TTT [TIOT [T IT [TTT [TITT 7T

Exercises

1. Create a function with parameters, p0 * sin (p1 * x) / X, and also draw it for different parameter values. Set
the colour of the parametric function to blue. After having drawn the function, compute for the parameter
values (p0 =1, p1 = 2):

a. Function value for x=1

b. Function derivative for x=1
c. Integral of the function between 0 and 3

2. Suppose you have this set of points defined in the attached file graphdata.txt. Plot these points using the
TGraph class. Use as marker point a black box. Looking at the possible options for drawing the TGraph in
TGraphPainter, plot a line connecting the points. Make a TGraphError and display it by using the attached
data set, graphdata_error.txt, containing error in x and y.

3. Create a one-dimensional histogram with 50 bins between 0 to 10, and fill it with 10000 gaussian distributed
random numbers with mean 5 and sigma 2. Plot the histogram and, looking at the documentation in the
THistPainter, show in the statistic box the number of entries, the mean, the RMS, the integral of the
histogram, the number of underflows, the number of overflows, the skewness and the kurtosis.

4. Using the tree contained in tree.root make a distribution of the total momentum of each whose beam energy
was outside of the mean by more than 0.2. Use TCut objects to make your events selections. Project this
distribution into a histogram, draw it and save it to a file.

https://github.com/ssilvado/ROOT-notebooks/blob/master/data/graphdata.txt
http://root.cern.ch/root/html/TGraphPainter.html
https://github.com/ssilvado/ROOT-notebooks/blob/master/data/graphdata_error.txt
http://root.cern.ch/root/html/THistPainter.html/#HP07
https://github.com/ssilvado/ROOT-notebooks/blob/master/data/tree.root

Installing ROOT

% You can install the ROOT's sources from the download area or using directly
the Git repository.

% Install using Git repository:
Clone the repo

$ git clone https://github.com/root-project/root.git

Make a directory for building
$ mkdir build
$ cd build

Run cmake and make
S cmake ../root
$ make —-3j8

Setup and run ROOT
$ source bin/thisroot.sh
S root

https://github.com/root-project/root.git

Installing ROOT

% You can install the ROOT's sources from the download area or using directly
the Git repository.

% Install from the download area: Download the source from
http://root.cern.ch/drupal/content/downloading-root

Unpack tar file After CMake has finished running, start the build

$ tar zxvf root 6.20.xx.source.tar.gz S cmake --build

Create a directory for containing the build
$ mkdir root-build
$ cd root-build

Setup the environment to run
S source
/Users/sheilamarass/root-build/bin/thisr

oot.sh
Execute the cmake command on the shell

S cmake

/Users/sheilamarass/Downloads/root-6.20
04

Atart ROOT interactive application

Sroot

http://root.cern.ch/drupal/content/downloading-root

A Little About C++

Object-Oriented Programming Concepts

% Classes are an expanded concept of data structures: like data structures, they
can contain data members, but they can also contain functions as members

% Object is an instantiation of a class. In terms of variables, a class would be
the type, and an object would be the variable.

% Pointers is a variable that stores the memory address as its value.

clais tReclztar:gIe class class_name{
seange vl access_specifier_1: member1;
int length; access_specifier 2: member2,;
int breadth; - -
Rectangle *ptr = &var1 = > 1000 —— intgetArea() } object_names;
l |
pointers B Oblect
address ™ R var1 address

Object-Oriented Programming Concepts

% Classes: the description of a “thing” in the system
% Object : instance of a class

% Methods: functions for a class

o Members: a “has a” relationship to the class
o Inheritance: an “is @” relationship to the class |_TObject ||

|

Sogment| I Track I Voriox |

m InterceptAtVert I

The class constructor

% A constructor constructs values of the class type. It is a member function
whose name is the same as the class name.

% This process involves initializing data members and, frequently, allocating free
store using new.

% Aclass constructor will have exact same name as the class and it does not
have any return type at all, not even void.

For example: the Graph class (https://root.cern.ch/doc/master/TGraph_8h_source.html)
class TGraph : public TNamed, public TAttLine, public TAttFill, public TAttMarker {

public:
TGraph();
TGraph(Int_t n);
TGraph(Int_t n, const Int_t *x, const Int_t *v);
TGraph(const TGraph &ar);

virtual Double_t GetErrorX(Int_t bin) const;
virtual Double_t GetErrorY(Int_t bin) const;

https://root.cern.ch/doc/master/classTGraph.html
https://root.cern.ch/doc/master/classTNamed.html
https://root.cern.ch/doc/master/classTAttLine.html
https://root.cern.ch/doc/master/classTAttFill.html
https://root.cern.ch/doc/master/classTAttMarker.html
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a16daaa7b596941b23915a1ac1be5b42c
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a16daaa7b596941b23915a1ac1be5b42c
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a13c6713ae496caa8195647f76887f926
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/legend1_8C.html#a1380cd153a0fc78015dd604dbcb6c841
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html#af67c25bf5dbcc17ef0bab90904b06da6
https://root.cern.ch/doc/master/classTGraph.html
https://root.cern.ch/doc/master/legend1_8C.html#a81e8067fc8f8d5a6217c06912ca906a0
https://root.cern.ch/doc/master/RtypesCore_8h.html#ab9b5334647b78ec4256db251e3ae1fc6
https://root.cern.ch/doc/master/classTGraph.html#afe3778d15496a7b7553bc4b7350709a2
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b
https://root.cern.ch/doc/master/RtypesCore_8h.html#ab9b5334647b78ec4256db251e3ae1fc6
https://root.cern.ch/doc/master/classTGraph.html#ac4bd6a7dd2e77c9ae13c63fd5ffb51c8
https://root.cern.ch/doc/master/RtypesCore_8h.html#a3885b911a54b47a4e61671f45dd45d0b

Loops: C++

for

4 for (initialization expr; test expr; update expr)\

{
// body of the loop

/| statements we want to execute

x} Y,

Example:
int i=0;
for (i=1;i<=10; i++)

{
}

printf("Hello World\n");

Loops: C++

while

/initialization expression;
while (test_expression)
{
/] statements
update_expression;

\J

Example:
inti = 1; // initialization expression

while (i < 6) // test expression

{
printf("Hello World\n");

|++; // update expression

}

Loops: C++

/initialization expression;
do do
{

/] statements
update_expression;
Q while (test_expression);

Example:
int i = 2; // Initialization expression

do

{
printf("Hello World\n");

|++; // update expression
} while (i < 1); //test expression

if ... then ... else: ROOT Logicsl condions
A= B (A not equal to B)
A && B (condition A and B)

if (testExpression1) A || B (condition A or B)

{ A >= B (A greater or equal than B)
/Il statements to be executed if testExpression1 is true A >=B (A greater than B)

} A <= B (A less or equal than B)

else if(testExpression2) A < B (Aless than B)

{
/] statements to be executed if testExpression1 is false and testExpression2 is true

}

else if (testExpression 3)

{

Il statements to be executed if testExpression1 and testExpression2 is false and
testExpression3 is true

}

else
{

/] statements to be executed if all test expressions are false

}

Function: C++

A function is a block of code which only runs when it is called
e type is the type of the value returned by

type name(parameter1, parameter2, ...) the function
{ e name is the identifier by which the
statements function can be called
} e parameters (as many as needed): each
parameter consists of a type followed by
an identifier.

e Statements is the function’s body

Void functions are created and used just like value-returning functions except they do not
return a value after the functions executes.

& and *
http://www.cplusplus.com/doc/tutorial/functions/

References

* http://webhome.phy.duke.edu/~raw22/public/root.tutorial/basic root 20100701.pdf

* https://docs.qoogle.com/presentation/d/1nNFRdh483KSYnoaA6qg7x0nVeDPbhY7gjWyaGmr0ZdTA/edit#slid
e=id.g2a0483ea55 3 300

http://webhome.phy.duke.edu/~raw22/public/root.tutorial/basic_root_20100701.pdf
https://docs.google.com/presentation/d/1nNFRdh483KSYnoaA6q7x0nVeDPbhY7gjWyaGmr0ZdTA/edit#slide=id.g2a0483ea55_3_300
https://docs.google.com/presentation/d/1nNFRdh483KSYnoaA6q7x0nVeDPbhY7gjWyaGmr0ZdTA/edit#slide=id.g2a0483ea55_3_300

