
Git/GitHub/GitLab tutorial
Introdução à análise de dados em FAE

What is Git?

● Git is a Distributed Version Control System (DVCS)
● Invented by Linus Torvalds (creator of Linux)
● Other version control systems you may know:

○ Centralized: Concurrent Versions System (CVS), Subversion (SVN)
○ Distributed: Mercurial (Hg)
○ Copy/paste files and folders on your computer

2

Git workflow

● Repository contains files, history,
config managed by Git

● The files can be:
○ Tracked
○ Untracked
○ Staged
○ Committed

● Three States of Git
○ Working directory
○ Staging area - pre-commit holding area:
○ Repository- Git Repository (history)

3

● Working area: actual source
code being edited on your local
machine

● Index: an intermediate area
between the working area and
the local repository

● Local: .git folder on your local
machine

● Origin: repo on a remote server

origin

GitHub.com

Local

Working Area

Com
mit

E
dit

P
us

h

C
lone

Cluster or personal computer

Remote Repository Workflow

4

Index

Stage

GitHub Setup

● Make an account:
https://github.com/join

● Generate an SSH key and add it
to your account:
https://help.github.com/articles/g
enerating-an-ssh-key/

5

https://github.com/join
https://help.github.com/articles/generating-an-ssh-key/
https://help.github.com/articles/generating-an-ssh-key/

Repositories

● Repository: a software project, the unit of development on Git
● Often abbreviated as “repo”
● Repositories may contain:

○ Source code
○ README text files (GitHub uses Markdown markup languages; full spec)
○ Input files (of various types)
○ .gitignore : list of file types (or filenames) to ignore automatically

● Do not store large binary files (e.g. ROOT files) in a Git repository! EVER!
○ Size of the repository can explode
○ Operations on the repository can become slow

6

Make a repository

● Create a new repository from scratch: git init
● Copy a repository (e.g. from GitHub): git clone

git@github.com:user/repo.git
● Both of these commands creates a “.git” folder with everything Git needs
● Remember: Every local copy of a repository is fully-featured!
● You can also create a new repository directly on GitHub
● A few clone features:

○ Change directory name: git clone git@github.com:user/foo.git bar
○ Start on a specific branch: git clone git@github.com:user/foo.git -b new

7

mailto:git@github.com
mailto:git@github.com
mailto:git@github.com

Basic Terminology

● Branch: development area for a project
○ One repository can have multiple branches

● Commit: a set of changes to a project (modify, add, remove files)
○ A commit is just a diff (list of lines changed, added, removed)
○ Each commit is identified by a unique hash (SHA-1) based on metadata:

parent(previous commit), date/time, author, committer, message, etc.

● Tag: specific version (snapshot) of a project
● Release: GitHub ass-on to a tag (release notes, source code tarball, etc.)
● Tracked: Git keeps track of a tracked file
● Untracked: Git does not keep track of an untracked file

8

Basic Commands: Commits & Files
All commands should be preceded by git, e.g. git add …

● commit -a: make a snapshot of all changes
○ Always leave a descriptive commit message with -m “message”

File operation commands:

● add [file]: start tracking a file
○ add -A: track all files

● rm [file]: delete a file and stop tracking it
● mv [old] [new]: rename a file
● All three of these commands can be used with -n, equivalent to --dry-run:

shows what will happen without actually doing it
● They can also be used with -f or --force, to override any warnings or

problems (e.g. file is ignored in .gitignore) 9

Basic Commands: Branches
All commands should be preceded by git, e.g. git checkout …

● Checkout [branch/commit]: switch to specific branch or commit
○ This command affect your current working area
○ checkout -b [branch] : create a new branch and switch to it
○ checkout -b [branch] [ref] : create a new branch to follow ref (use ref as starting point for

the new branch) (ref can be another local branch, a remote branch, even a commit)
○ checkout [ref] [file] : switch to specific file to the version in ref

● branch: list local branches
○ This command affects Git’s list of branches
○ branch -a : list all branches (including remote branches)
○ branch [branch] : make a new branch
○ branch [branch] [ref] : make a new branch to follow ref
○ branch -m [old] [new] : rename a branch
○ branch -d [branch] : delete a branch

10

Basic Commands: Status

● status: see the current state of all uncommitted changes (ignores all file or
type specified in .gitignore)

○ -s: summarize status
○ -suno: summarize status (s) of only tracked files (uno)
○ [file]: see status of specified file

● diff: see the actual changes in diff output format
○ Many possibilities: specific file ([file]), specific commits ([commit1] [commit2]), etc.

11

Git Setup

In your home directory:

.gitconfig
[user]
 name = Sheila Amaral
 email = sheila.silva.do.amaral@cern.ch
 github = ssilvado

git config --global user.name [Name]
git config --global user.email [Email]
git config --global user.github [Account]

Commands to set these:

To see the configuration:

To see the global configuration:

git config --list

cat ~/.gitconfig

12

Create Repository on GitHub

13

Create a new Repository Locally https://hipsum.co/

Create a new repository from
scratch:
cd git-projects
git init hellogit

Check the .git folder
cd hellogit
ls .git

Check the status
git status

14

Create a new Repository Locally
Create a new file test.txt
echo “It is just a demo
file” >> test.txt

Check the status
git status

Start track the file test.txt
git add test.txt
git status

Commit the changes to the staging
area
git commit
git status

Check the register
git log

15

Create a new Repository Locally
Create a new file test.txt
echo “It is just a demo
file” >> test.txt

Check the status
git status

Start track the file hipster.txt
git add test.txt
git status

Commit the changes to the staging
area
git commit
git status

Check the register
git log

16

Create a new Repository Locally
Create a new file test.txt
echo “It is just a demo
file” >> test.txt

Check the status
git status

Start track the file test.txt
git add test.txt
git status

Commit the changes to the staging
area
git commit
git status

Check the register
git log

17

Create a new Repository Locally
Create a new file test.txt
echo “It is just a demo
file” >> test.txt

Check the status
git status

Start track the file hipster.txt
git add test.txt
git status

Commit the changes to the staging
area
git commit
git status

Check the register
git log

18

Create a new Repository Locally
Create a new file test.txt
echo “It is just a demo
file” >> test.txt

Check the status
git status

Start track the file test.txt
git add test.txt
git status

Commit the changes to the staging
area
git commit
git status

Check the register
git log

19

Create a new Repository Locally
Create a new file test.txt
echo “It is just a demo
file” >> test.txt

Check the status
git status

Start track the file hipster.txt
git add test.txt
git status

Commit the changes to the staging
area
git commit
git status

Check the register
git log

20

First push

21

First push
Show list of remote repos
git remote -v

Add new remote
git remote add origin
https://github.com/ssilvad
o/hellogit.git

Show list of remote repos
git remote -v

Send local ref (master) to specific
remote (origin)
git push origin master

22

https://github.com/ssilvado/hellogit.git
https://github.com/ssilvado/hellogit.git

First push
Show list of remote repos
git remote -v

Add new remote
git remote add origin
https://github.com/ssilvad
o/hellogit.git

Show list of remote repos
git remote -v

Send local ref (master) to specific
remote (origin)
git push origin master

23

https://github.com/ssilvado/hellogit.git
https://github.com/ssilvado/hellogit.git

Create a new Branch

Check in which branch we are now
git branch -v

Create new branch named work
git branch work

Switch to the branch work
git checkout work

Display logs of all branches and tag
git log --all

24

Git merge

Start a new feature
git checkout -b testing master

Create new file test-branches-merge.txt
and commit change
echo “Working with branches
and merge” >>
test-branches-merge.txt
git add
test-branches-merge.txt
git commit -m “New test”

Merge in the testing branch
git checkout master
git merge testing
git branch -d testing

25

Git merge

Start a new feature
git checkout -b testing master

Create new file test-branches-merge.txt
and commit change
echo “Working with branches
and merge” >>
test-branches-merge.txt
git add
test-branches-merge.txt
git commit -m “New test”

Merge in the testing branch
git checkout master
git merge testing
git branch -d testing

26

Git merge

Start a new feature
git checkout -b testing master

Create new file test-branches-merge.txt
and commit change
echo “Working with branches
and merge” >>
test-branches-merge.txt
git add
test-branches-merge.txt
git commit -m “New test”

Merge in the testing branch
git checkout master
git merge testing
git branch -d testing

27

Collaboration on GitHub
● Common development situation:

○ Group software project (e.g. ntuple production
code)

○ A few people may be “in charge” - release
managers

○ Many people may contribute code - objects,
algorithms, configurations, etc.

● Several options:

○ Everyone commits to the same repository ✕
○ Each contributor forks the repo and sends pull

requests with new feature ✓⇒“Fork and Pull”
development model

● What is a Pull Request?

Pull requests are a feature specific to GitHub. They provide a
simple, web-based way to submit your work (often called
“patches”) to a (“upstream”) project. It's called a pull request
because you're asking the project to pull changes from your
fork.

28

“Fork and Pull” workflow

1. Fork repository: this creates a new copy of the repo under your GitHub user account
2. Clone the repository to your local computer: git clone https://github.com/useraccount/demo
3. Create a new branch by issuing the command: git checkout -b new_branch
4. Create a new remote for the upstream repo with the command: git remote add upstream

https://github.com/useraccount/demo
a. In this case, “upstream repo” refers to the original repo you created your fork from.

5. Now you can make change to the code.
a. E.g.: Make any change (echo “some test file” >> test) > git status > git add test > git commit -m

“Adding a test file to new_branch”
6. Push the changes to the remote: git push -u origin new_branch
7. Once you push the changes to your repo, the Compare & pull request button will appear in GitHub.

29

https://github.com/useraccount/demo
https://github.com/useraccount/demo

Undo in Git

It depends on the stage of development

● Undo local changes
○ Unstaged local changes (before git add and git commit): git checkout .
○ Stages local changes (before git commit): git reset
○ Committed local changes

■ Without modifying history: git revert HEAD
■ With history modification: (*)

○ Redoing the Undo (*)

● Undo remote changes
○ without changing history (*)
○ with history modification (*)

(*) check https://docs.gitlab.com/ee/topics/git/numerous_undo_possibilities_in_git/ 30

Exercício
● I created a web project* on my GitHub account and you should change any

file and submit a Pull Request, based on the “Fork and Pull” method
● The repository is: https://github.com/ssilvado/web-project
● It should be done until April 16th, 2020.

*This HTML5 project was created using http://www.initializr.com/, which is a template generator

https://github.com/ssilvado/web-project
http://www.initializr.com/

