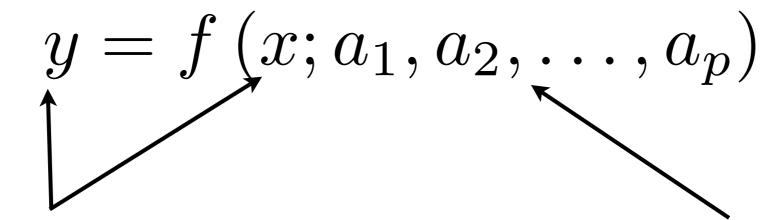
Física Geral - Laboratório

Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções

Medidas indiretas: Ajuste de funções

□ Ajuste de funções



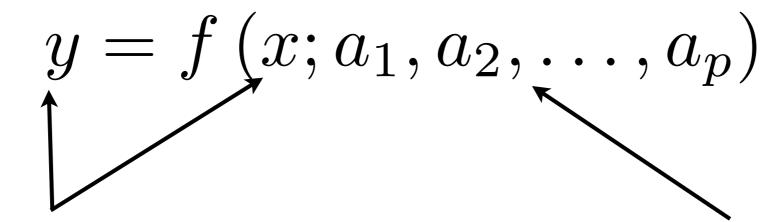
Medidas de duas grandezas x e y:

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

Estimativa dos parâmetros (a partir de uma relação funcional postulada)

Medidas indiretas: Ajuste de funções

□ Ajuste de funções

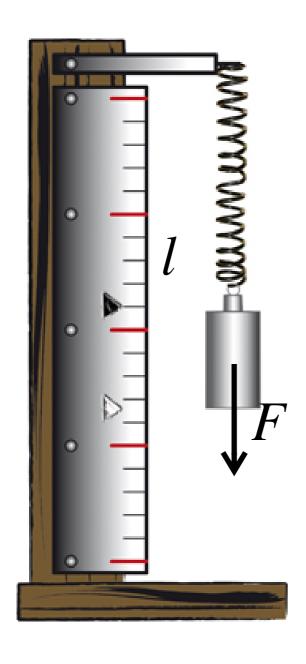


Medidas de duas grandezas x e y:

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

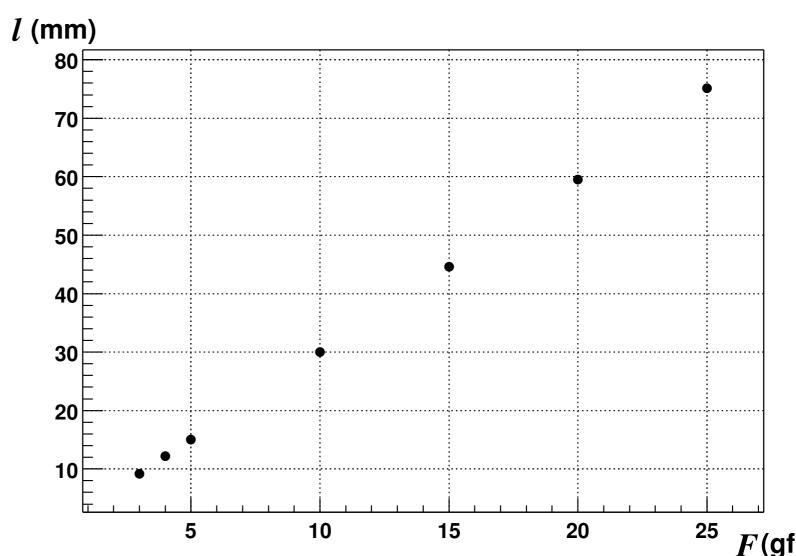
Estimativa dos parâmetros (a partir de uma relação funcional postulada)

Queremos obter:
$$a_1 \pm \sigma_{a_1}, \ldots, a_p \pm \sigma_{a_p}$$



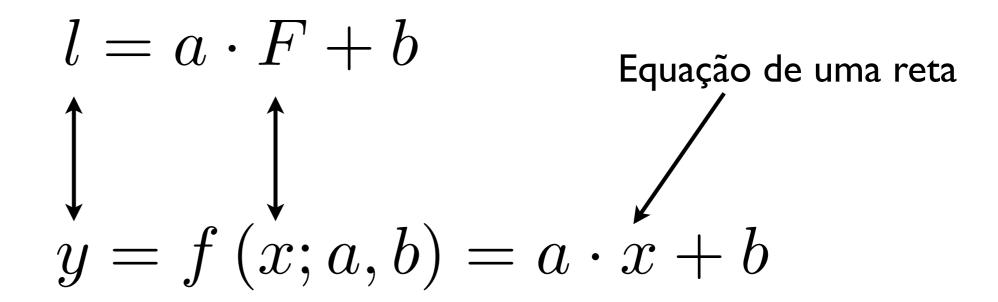
\overline{F} (gf)	l (mm)
3	9,2
4	12,2
5	15,0
10	30,0
15	44,6
20	59,5
25	75,1

F (gf)	l (mm)
3	9,2
4	12,2
5	15,0
10	30,0
15	44,6
20	59,5
25	75,1



Regressão é uma técnica que permite estabelecer uma relação entre um par...

O comportamento ideal de uma mola nos diz que a sua elongação é relacionada com a magnitude da força aplicada na mesma:

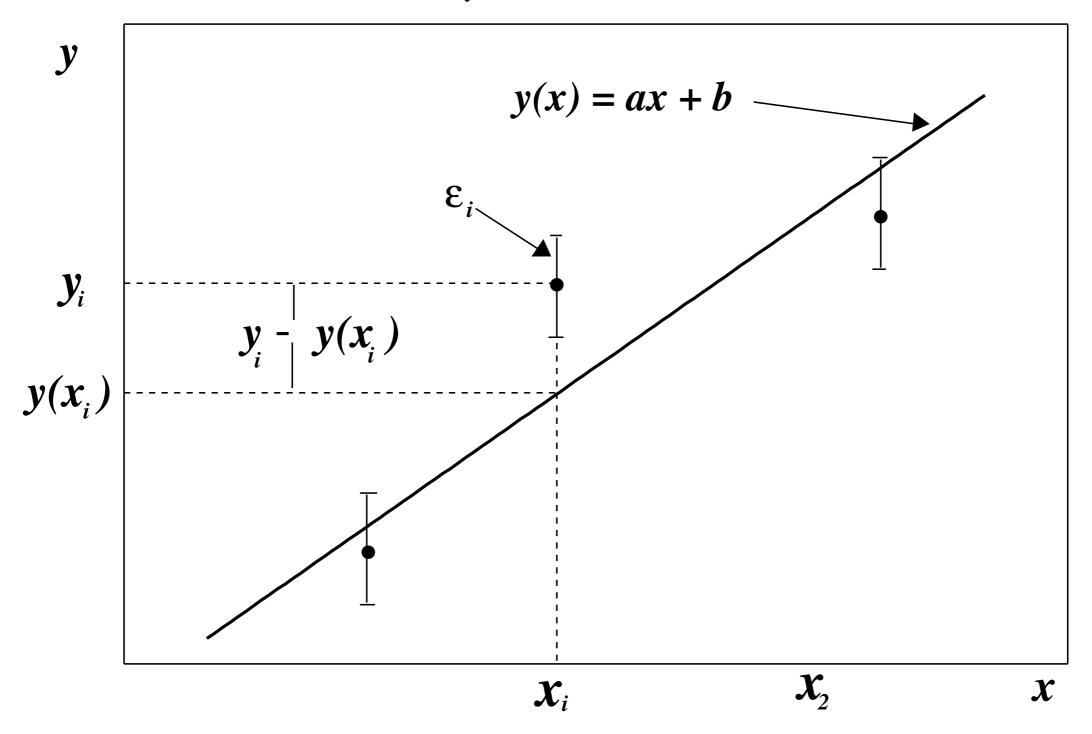


Queremos obter estimativas para os parâmetros da reta (a,b). Para isso utilizamos um método chamado de "Método dos Mínimos Quadrados"

Queremos minimizar a soma dos quadrados das distâncias entre a medidas observadas e os valores previstos pela relação funcional entre y e x:

$$S\left(a,b\right) = \sum_{i=1}^{N} \left(y_i - y\left(x_i\right)\right)^2 = \sum_{i=1}^{N} \left[y_i - \left(ax_i + b\right)\right]^2$$
Medida observada $y = f\left(x_i; a, b\right) = ax_i + b$

Obs.: Quando a relação funcional postulada entre as medidas é linear (ou seja elas são relacionadas pela eq. de uma reta), chamamos o método de "Ajuste linear"



 \square No caso anterior assumimos que as incertezas nas medidas de y e x são constantes. Em geral devemos considerar o erro em cada medida (σ_i):

$$S(a,b) = \sum_{i=1}^{N} \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 = \sum_{i=1}^{N} \left[\frac{y_i - (ax_i + b)}{\sigma_i} \right]^2$$

Erro efetivo em cada medida

□ Podemos mostrar (Exercício - Ver Apêndice F do livro texto) que as estimativas dos parâmetros e suas incertezas são dadas por:

$$a = r \frac{\sigma_y}{\sigma_x} = \frac{\sigma_{xy}}{\sigma_x^2}$$

$$b = \bar{y} - a\bar{x}$$

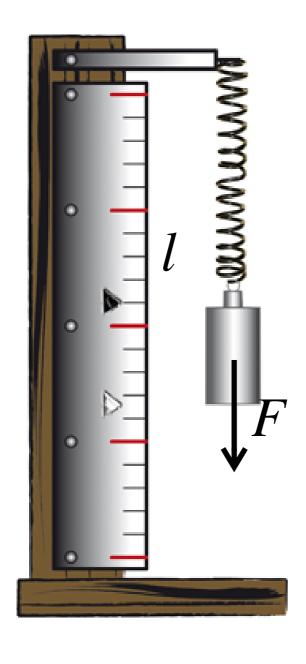
$$b = \bar{y} - a\bar{x}$$

$$\sigma_a = \frac{1}{\sigma_x} \frac{\epsilon_y}{\sqrt{N}}$$

$$\sigma_b = \sigma_a \sqrt{\overline{x^2}}$$

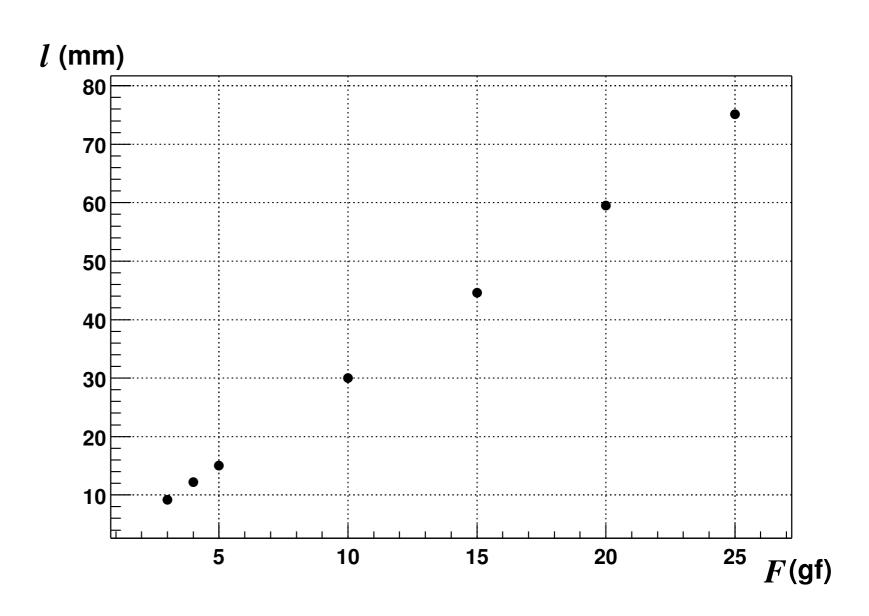
$$\sigma_b = \sigma_a \sqrt{\overline{x^2}}$$

$$\epsilon_y = \sqrt{\sum_{i=1}^{N} \frac{[y_i - (ax_i + b)]^2}{N - 2}} = \sigma_y \sqrt{\frac{N}{N - 2} (1 - r^2)}$$

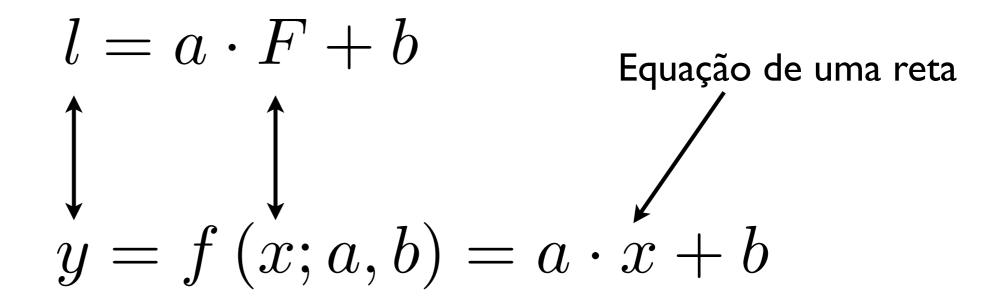


F (gf)	l (mm)
3	9,2
4	12,2
5	15,0
10	30,0
15	44,6
20	59,5
25	75,1

l (mm)
9,2
12,2
15,0
30,0
44,6
59,5
75,1



O comportamento ideal de uma mola nos diz que a sua elongação é relacionada com a magnitude da força aplicada na mesma:



Exemplo: organizando os dados

(mm/gf)

(mm)

(mm)

(mm/gf)

Exemplo: resultados

F (gf)	l (mm)
3	9,2
4	12,2
5	15,0
10	30,0
15	44,6
20	59,5
25	75,1

$$a = (2.983 \pm 0.013) \text{ mm/gf}$$

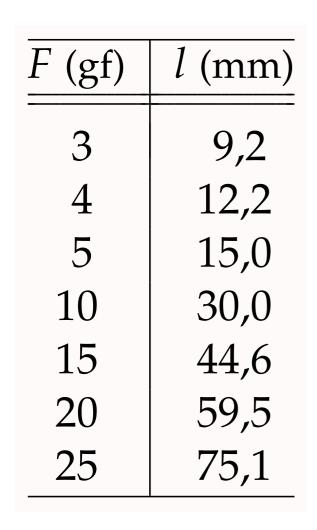
$$b = (0.14 \pm 0.18) \text{ mm}$$

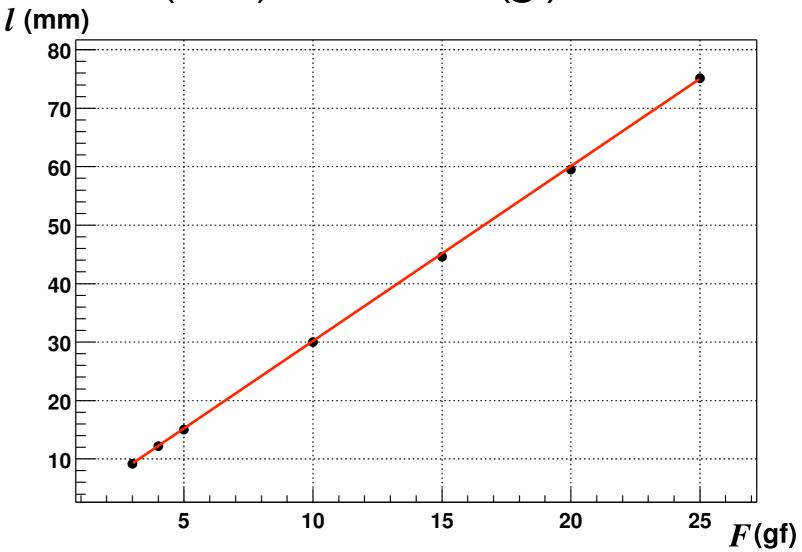
$$\epsilon_y = \epsilon_l = 0.27 \text{ mm}$$

Equação da reta:

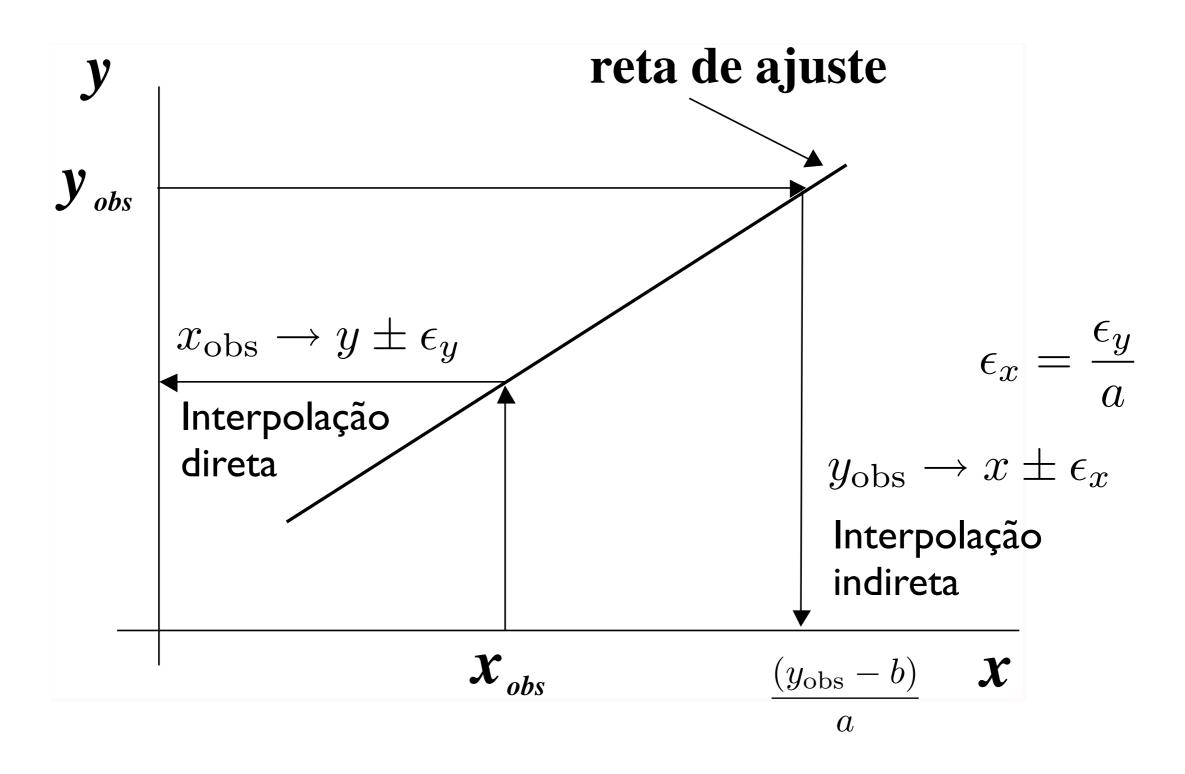
$$l \text{ (mm)} = 2.983 \cdot F \text{ (gf)} + 0.14$$

Equação da reta de calibração: I (mm) = 2,983 F(gf) + 0,14

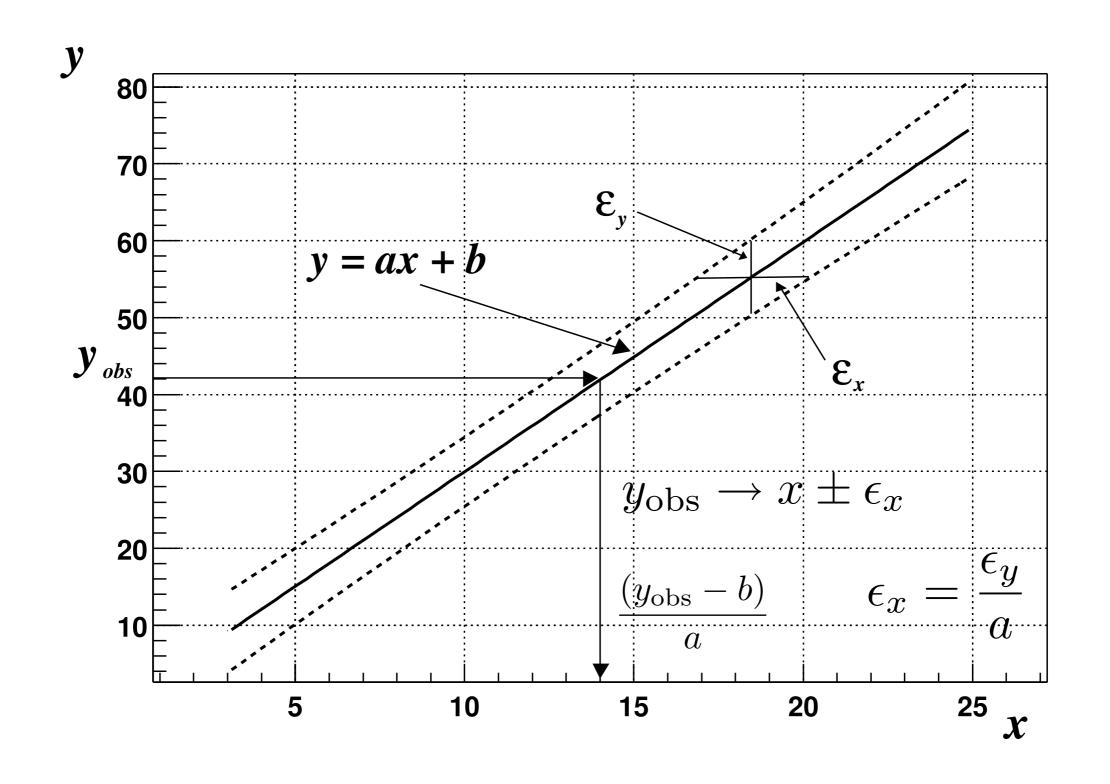




Reta de calibração e interpolação



Faixa de confiança



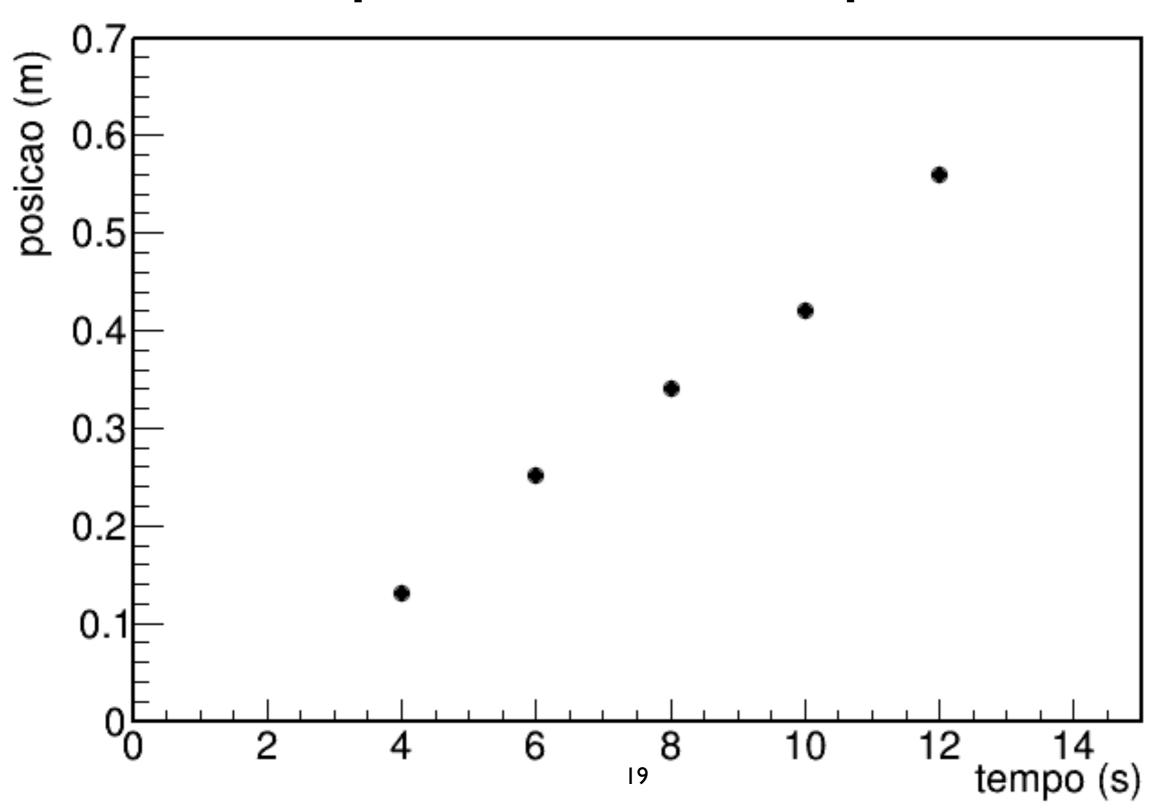
Exercício

Com base nos dados abaixo, determine a velocidade do objeto em deslocamento uniforme sobre um trilho de ar.

t(s)	4	6	8	10	12
s(m)	0.13	0.25	0.34	0.42	0.56

- a) Faça o diagrama de dispersão dos dados acima;
- b) Determine a covariância;
- c) Determine o coeficiente linear de Pearson;
- d) Há correlação entre a posição s e o tempo t? Justifique;
- e) Determine a relação funcional do diagrama da letra a);
- f) Determine, através do MMQ, a equação da reta do diagrama da letra a) e trace-a sobre o diagrama;
- g) Determine a velocidade do objeto.

Diagrama de dispersão: posição vs. tempo



• Covariância: $\sigma_{xy} = \overline{xy} - \bar{x}\bar{y}$

covariância (posicao Vs. tempo): 0.412

• Coeficiente de Pearson: $r = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$

coeficiente de Pearson (posicao vs. tempo): 0.995739 ~ 1.00

correlação linear, perfeita e positiva

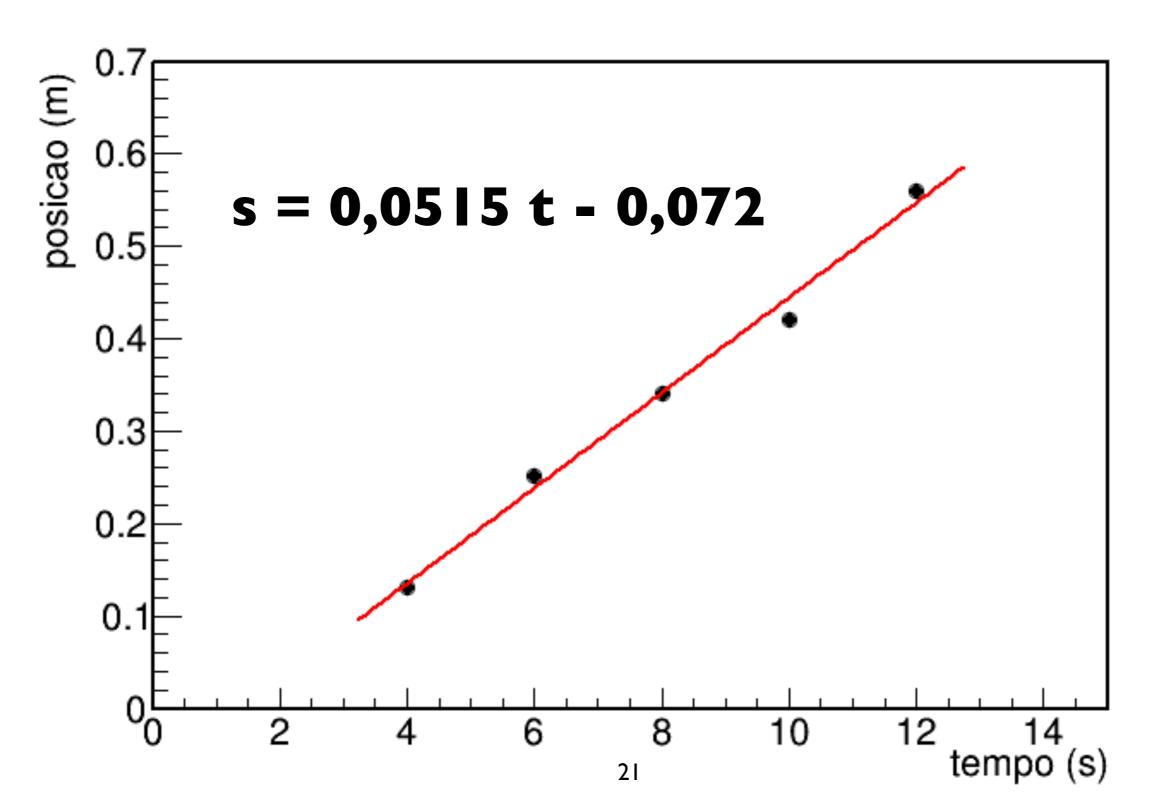
Relação funcional: s = vt + s_0

$$a +- sigma_a = 0.0515 +- 0.00275379$$

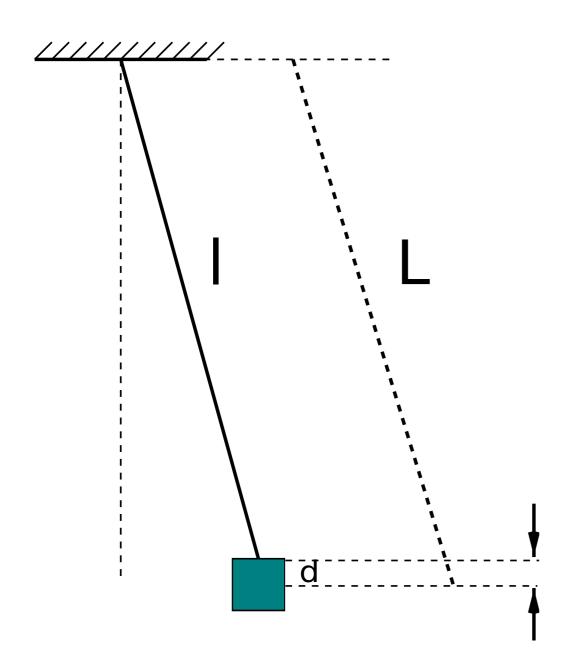
 $b +- sigma_b = -0.072 +- 0.0233666$

- Equação da reta: s = 0,0515t 0,072
- v = (0.051 + 0.003) m/s

Diagrama de dispersão: posição vs. tempo



Exemplo: pêndulo (atividade próxima aula)

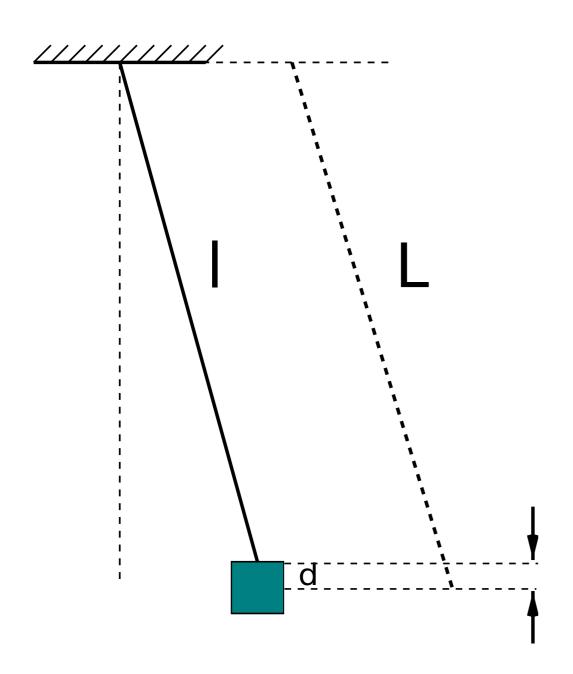


$$T = 2\pi \sqrt{\frac{L}{g}} \Rightarrow L = g \frac{T^2}{4\pi^2}$$

$$L = l + d$$

$$l = g \frac{T^2}{4\pi^2} - d$$

Exemplo: pêndulo (atividade próxima aula)



$$l = g \frac{T^2}{4\pi^2} - d$$

$$\rightarrow y = ax + b$$

$$y = l$$

$$x = \frac{T^2}{4\pi^2}$$

$$a = g$$

$$b = -d$$

Exemplo: pêndulo (atividade próxima aula)

 χ

	l (cm)	<i>t</i> (s)	T = (t/20) (s)	$T^2/4\pi^2 \text{ (s}^2\text{)}$
Medida 1				
Medida 2				
Medida 3				
Medida 4				
Medida 5				

i) Estimar o valor da aceleração da gravidade:

$$g \pm \sigma_g$$

ii) Analisar a compatibilidade com o valor de referência:

$$g = 9,78789849(14)m/s^2$$

iii) Estimar o comprimento do pêndulo localizado no vão das escadas!