

Física IV

Prática I Helena Brandão Malbouisson, sala 3018A email:

slides (modificados) do prof. Sandro Fonseca de Souza

Regras Gerais

A parte experimental dos cursos de Física IV é composta de dez práticas de laboratório, as quais são descritas neste roteiro.

Os alunos devem elaborar os gráficos correspondentes a cada uma destas práticas, os quais serão usados na avaliação da parte experimental do curso. É importante que estes gráficos sejam elaborados de acordo com as regras gerais descritas mais adiante.

Receberão nota <u>zero</u> os gráficos entregues fora do prazo, ou relativos a uma prática que o aluno não tenha participado ou assinado a lista de frequência. A assinatura da lista de frequência é de responsabilidade do aluno.

Ao longo do semestre serão aplicadas duas provas práticas, abrangendo todas as experiências realizadas no período.

A média final da parte experimental da disciplina (M_E) , será calculada da seguinte forma:

$$M_E = \left(\frac{P_1 + P_2}{2}\right) \times F$$
 (1)

$$F = \frac{1}{N} \sum_{i=1}^{N} p_i \cdot r_i$$
(2)

onde P_1 e P_2 são as notas das provas práticas de laboratório. p_I corresponde a presença na prática i, que pode assumir o valor 0, quando o aluno não comparecer à aula e o valor 1 indicando a sua presença; r_i corresponde à entrega do gráfico da prática i, que pode assumir o valor 0 ou 1 e N o número de práticas.

Existe a possibilidade do aluno recuperar apenas uma das práticas perdidas para cada das provas através de uma aula de reposição previamente definida pelo professor.

Regras Gerais

Elaboração dos gráficos e conclusões

O gráfico deve conter os pontos experimentais e a curva obtida através do método dos mínimos quadrados. Observe as unidades utilizadas, a diferença entre os pontos experimentais e
os pontos usados para traçar a reta, a escala do gráfico, os valores e grandezas de cada eixo,
o título do gráfico, enfim o gráfico precisa ser compreendido por alguém que não entendesse
nada do conteúdo do experimento;

Além do gráfico é obrigatório apresentar suas conclusões a respeito dos resultados obtidos a partir da análise dos dados. Incluir também uma discussão dos principais erros da experiência e uma comparação com a expectativa teórica.

O gráfico é obrigatório, caso contrário, o aluno perde a presença na respectiva aula e deve ser entregue sempre até a aula seguinte.

Prova prática

Prova experimental composta por: sorteio de uma prática onde o professor avalia se o aluno é capaz de:

- Reproduzir o experimento fazendo a preparação adequada;
- Elaborar a análise de dados simplificada;
- Entender, através dos conceitos físicos, as medidas realizadas.

Normas e Datas

- Pl lab: 25/09/2019, na sala 3050F no horário da aula.
- P2 lab: 13/11/2019, na sala 3050F no horário da aula.

- Não há reposição da prova do lab.
- Entretanto, solicitações extraordinárias devem ser feitas por escrito na secretaria do DFNAE (3001A).
- Cada estudante receberá um formulário sobre o método dos mínimos quadrados e deverá fazer suas próprias cópias dos mesmos.

http://dfnae.fis.uerj.br/twiki/bin/view/DFNAE/FisicaExp

DFNAE

Jump Search

Main I UERJ

Editar I Login

Laboratório:

Laboratório:

Apostila:

Roteiros e material de aula:

Slides-Prof. Sandro:

Slides Professora Helena

Slides Professora Clemencia

Datas Importantes

Slides Professora Marcia Slides Professor Helio

Material - Prof. Antonio Pereira - Lab. Física IV Turma 01 - Física Exp. Turma 10 - 2017/2 - 2018/1

Slides Profa. Patricia

Leitura Sugerida

Comentários

Apostila:

* Apostila

Roteiros e material de aula:

- * Folhas de Dados
- * Método dos Mínimos Quadrados

Experiências

- 1. Intensidade Luminosa;
- 2. Polarização da Luz;
- 3. Reflexão e Refração;
- 4. Interferência;
- 5. Difração em fenda simples;
- 6. Rede de Difração;
- 7. Espectroscopia parte A;
- 8. Espectroscopia parte B;
- 9. Razão carga/massa do elétron;

Aula de Hoje

• Medidas, Ajustes e Gráficos;

Métodos dos Mínimos Quadrados-MMQ.

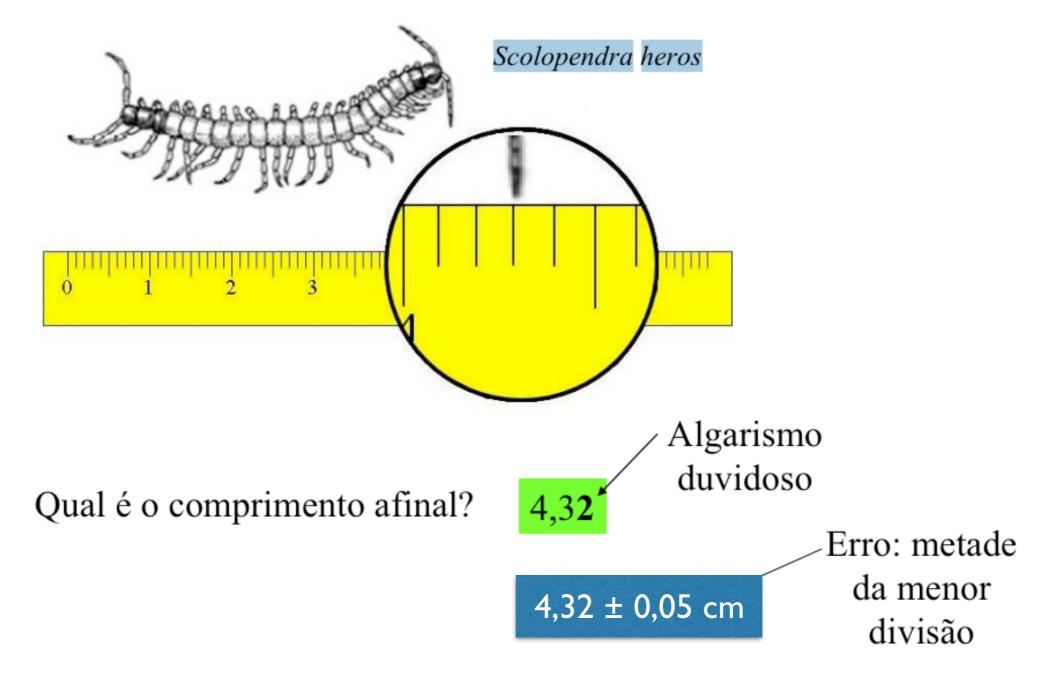
Exercícios

Principais fontes de erros em medidas experimentais

Erros sistemáticos

- Tem sua origem:
 - √ Erro da medida;
 - √ Falta de ajuste do instrumento de medida;
 - √ Calibração do instrumento.
- Exemplos:
 - ✓ Procedimento do experimentador;
 - √ Alinhamento incorreto do instrumento.

Erros estatísticos


- Tem sua origem:
 - √ Ocorrem por variações incontroláveis e aleatórias dos instrumentos de medida;
 - √ Condições externas, por exemplo:
 - ► Temperatura;
 - Umidade do ar;
 - Variação da rede elétrica.

Como você deve proceder com suas medidas experimentais.

- Minimizar as fontes de erros sistemáticos em suas medidas.
- De modo que restam "apenas" os erros estatísticos que podem ser tratados por métodos matemáticos.

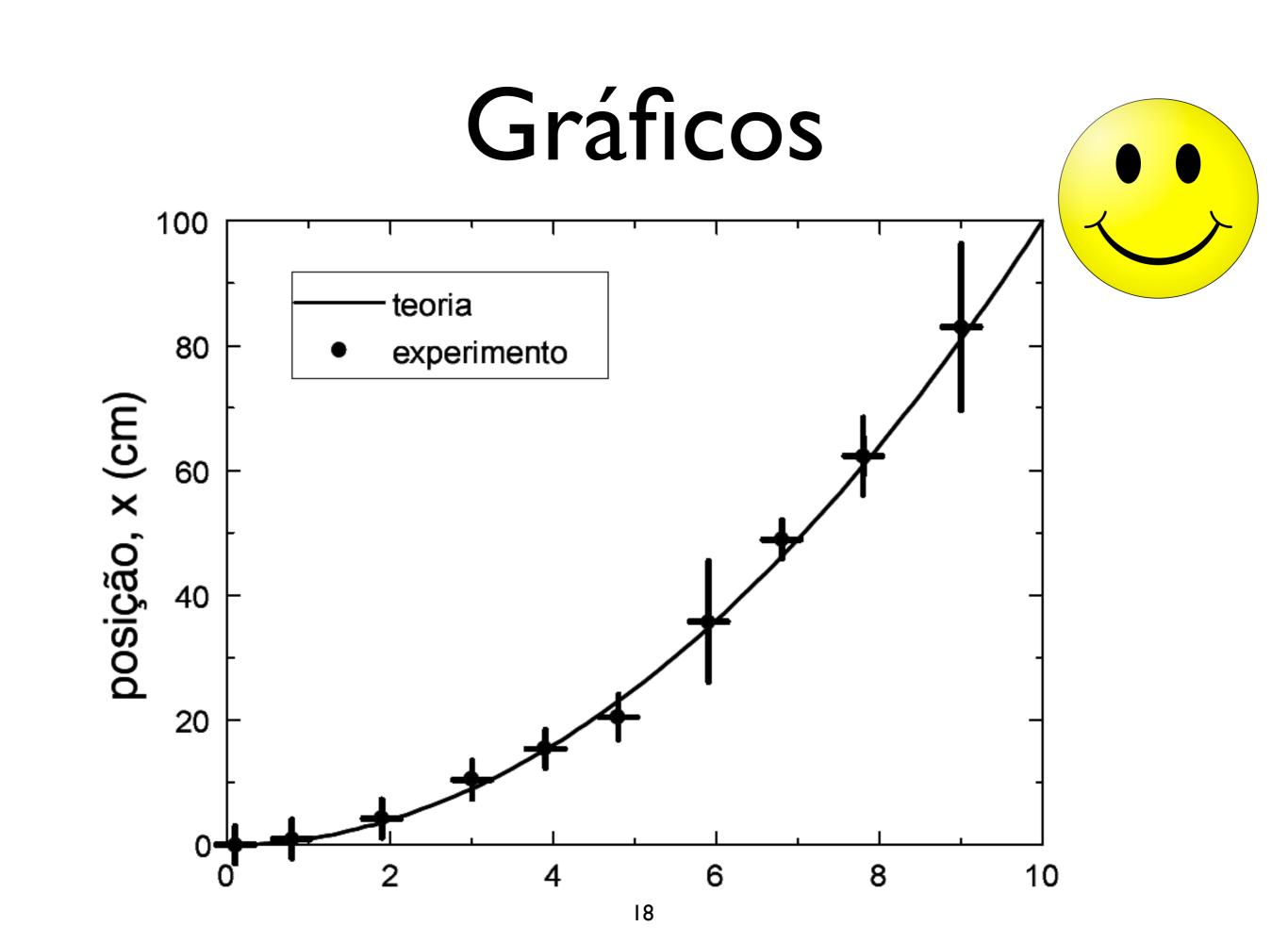
Revisão

Algarismos Significativos

Quais são os algarismos significativos?

Algarismos Significativos

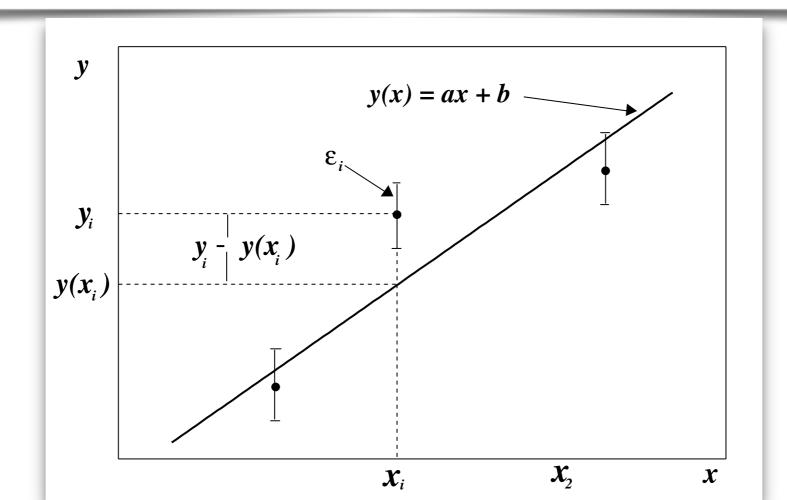
Qualquer algarismo à direita, no sentido usual de leitura, do primeiro algarismo não nulo


Exemplos:

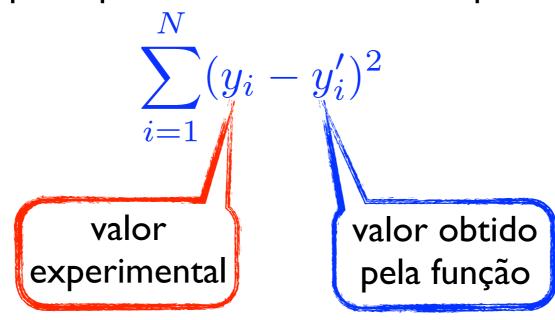
```
0,02\Rightarrow 1 algarismo significativo0,2\Rightarrow 1 algarismo significativo2\Rightarrow 1 algarismo significativo2,0\Rightarrow 2 algarismos significativos2,00\Rightarrow 3 algarismos significativos2000\Rightarrow 4 algarismos significativos2,0 x 10³\Rightarrow 2 algarismos significativos
```

Aproximações

$$N = 3,87 \mathbf{XY} \begin{cases} N = 3,88 \text{ se } X > 5 \\ N = 3,87 \text{ se } X < 5 \\ \text{Se} \qquad X = 5 \Rightarrow \end{cases}$$
 se $Y \ge 5$ depois de $X \Rightarrow N = 3,88$ se $Y \ge 5$ depois de $Y \Rightarrow N = 3,88$


Dominando os Gráficos

Ajuste de Funções


Métodos dos Mínimos Quadrados (MMQ)

- Encontrar a melhor curva regular que se ajuste aos dados experimentais.
- Pode-se usar um critério individual para traçar uma curva que se ajuste a um conjunto de dados.
- Entretanto, afim de evitar este tipo de critério, vamos utilizar o MMQ que possibilita encontrar uma curva que melhor representa um determinado conjunto de dados experimentais.

Vamos definir uma função linear do tipo: y'=m.x+b

Pelo MMQ a função que melhor se ajusta ao conjunto de dados experimentais, é aquela que minimiza a soma do quadrado dos desvios,

Considerando todos os dados, temos que o conjunto de desvios:

$$d_i = y_i - (m.x_i + b), i = 1, 2, \dots, N$$

Assim utilizando o quadrado da soma dos desvios, a soma dependerá apenas da escolha dos coeficientes da função.

$$f(m,b) = \sum_{i=1}^{N} d_i^2$$

$$f(m,b) = \sum_{i=1}^{N} [y_i - mx_i - b]^2$$

$$\frac{\partial f(m,b)}{\partial m} = \frac{\partial}{\partial m} \left[\sum_{i=1}^{N} \left[y_i - mx_i - b \right]^2 \right] = 0$$

$$m\sum_{i=1}^{N} (x_i^2) + b\sum_{i=1}^{N} (x_i y_i)^{-1}$$

$$\frac{\partial f(m,b)}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{i=1}^{N} \left[y_i - mx_i - b \right]^2 \right] = 0$$

Estas são chamadas equações normais.

experimentais

N é o número de medidas
$$m \sum_{i=1}^{N} (x_i) + Nb = \sum_{i=1}^{N} (y_i)$$

Resolvendo o sistema de equações anteriores, temos que:

$$m = \frac{M_{xy}}{M_{xx}}$$

$$M_{xy} = \sum_{i=1}^{N} x_i y_i - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right)$$

$$M_{xx} = \sum_{i=1}^{N} x_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2$$

m: coefficiente angular da reta ajustada b: coeficiente linear da reta ajustada

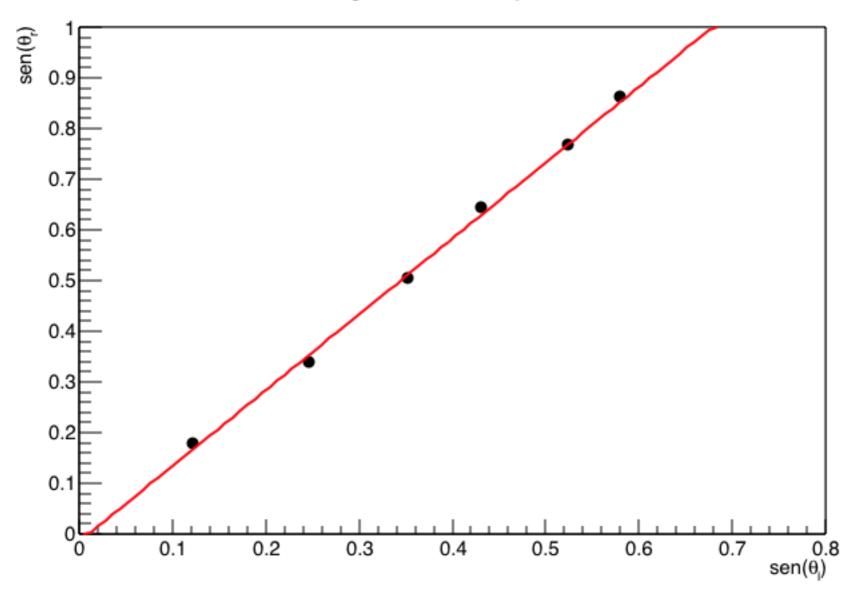
$$b = \frac{1}{N} \left(\sum_{i=1}^{N} y_i - m \sum_{i=1}^{N} x_i \right)$$

O desvio padrão e os erros associados ao coeficiente angular (m) e linear (b) são respectivamente:

$$\sigma^{2} = \frac{1}{N-2} \sum_{i=1}^{N} (y_{i} - (m x_{i} + b))^{2}$$

$$\epsilon_{m} = \sqrt{\frac{\sigma^{2}}{M_{xx}}}$$

$$\epsilon_{b} = \sqrt{\frac{\sigma^{2}}{NM_{xx}} \sum_{i=1}^{N} x_{i}^{2}}$$


Usando o MMQ

Exercício: utilize os valores das variáveis x e y da tabela abaixo e:

- a. monte o gráfico correspondente em papel milimetrado;
- b. utilizando o método dos mínimos quadrados, determine os parâmetros da reta de ajuste (coeficiente angular e linear) e suas respectivas incertezas;
- c. trace a reta de ajuste sobre o gráfico do ítem a.

N	У	X	XX	уу	x.y	Mxx	Mxy	m	b	σ^2	εm	εb
	0,174	0,122										
	0,342	0,242										
	0,500	0,350										
	0,643	0,438										
	0,766	0,522										
	0,866	0,588										
	0,940	0,649										
N	Σу	Σx	∑ x.x	∑ y.y	∑ x.y	Mxx	Mxy	m	b	σ^2	εm	εb
	23		ZAIA	∠ 3-3	<u> </u>		xy		~	<u> </u>	C	0.0
			J.									

Diagrama de Dispersao

Referências

- Apostila do laboratório na xerox do terceiro andar.
- Apostila online: http://dfnae.fis.uerj.br/twiki/pub/DFNAE/FisicaExp/apostila.pdf

Próxima Aula

• Prática I: Intensidade Luminosa.