

Universidade do Estado do Rio de Janeiro Instituto de Física Departamento de Física Nuclear e Altas Energias

Estrutura da Matéria II

Espectroscopia de raios-X e interação da radiação com a matéria

Versão 1.3

(2013)

Sara Cristina Quintanilha Valente, Helio Nogima e Wagner de Paula Carvalho

1 Introdução

1.1 Espectros de raios-X

Os raios-X são radiações eletromagnéticas que apresentam características semelhantes às da luz visível. A faixa de frequência varia de 10^{18} Hz até 10^{20} Hz (Figura 1) e seu comprimento de onda está entre 5 pm (picômetros) até cerca de 1 nm (nanômetro).

Figura 1: Espectro eletromagnético.

Os raios-X podem ser produzidos em um tubo a vácuo (Figura 2), quando um feixe de elétrons acelerados por uma diferença de potencial (V_0) da ordem de milhares de volts é freado ao atingir um alvo, o ânodo.

Figura 2: Esquema do tubo de raio-X.

Do processo de penetração do feixe de elétrons no ânodo surgem duas componentes de raios-X:

- Uma de espectro contínuo, resultado da desaceleração do elétron durante a penetração no ânodo, também conhecida como radiação de frenamento ou pelo termo alemão: bremsstrahlung;
- Outra, cujo espectro apresenta valores discretos de energia, com origem na desexcitação de elétrons de camadas de mais alta energia que vão ocupar as camadas dos elétrons ejetados do átomo.

1.1.1 Espectro contínuo de emissão (bremsstrahlung):

Um elétron de energia cinética K é desacelerado pela interação com os campos elétricos dos núcleos do alvo e a energia que ele perde aparece na forma de radiação, como um fóton de raios-X (Figura 3).

Figura 3: Ilustração do processo de bremsstrahlung, responsável pela produção do espectro contínuo de raios-X.

O elétron interage com o núcleo carregado através do campo coulombiano, transferindo momento para o núcleo. A desaceleração resultante causa a emissão do fóton. A massa do núcleo é tão grande que a energia que ele adquire nesse processo pode ser completamente desprezada. Se K' é a energia cinética do elétron após a interação, então a energia do fóton é:

$$h\nu = K - K' \tag{1}$$

que pode ser relacionada com o comprimento de onda do fóton λ por:

$$\frac{hc}{\lambda} = K - K' \tag{2}$$

onde h é a constante de Planck.

Os elétrons do feixe incidente podem perder diferentes quantidades de energia nessas interações, e em geral um elétron chegará ao repouso apenas depois de várias interações. Os raios-X assim produzidos constituem um espectro contínuo, com comprimentos de onda que vão desde λ_{min} até $\lambda \to \infty$, correspondentes às diferentes perdas em cada colisão. O fóton de menor comprimento de onda é emitido quando um elétron perde toda a sua energia cinética em um único processo de colisão; neste caso K'= 0, de forma que:

$$\lambda_{min} = \frac{hc}{K} \tag{3}$$

Como a energia adquirida pelo elétron ao ser acelerado pela diferença de potencial V aplicada ao tubo de raios-X é: K = eV, onde e é a carga do elétron, temos:

$$\lambda_{min} = \frac{hc}{eV} \tag{4}$$

Portanto, conhecendo-se a diferença de potencial, é possível obter o valor mínimo do comprimento de onda da radiação X.

1.1.2 Espectro discreto

Dependendo da intensidade do potencial de aceleração, os elétrons incidentes podem ter energia suficiente para arrancar elétrons dos átomos alvo produzindo íons ou átomos excitados (Figura 4). Durante o processo de recombinação ou desexcitação, ocorre a emissão de fótons característicos do material, cujas energias são bem definidas, associadas às transições entre níveis atômicos (Figura 5).

Figura 4: O processo de produção de raios-X.

O espectro característico observado na emissão de tubos de raios-X é composto por picos de intensidade, relacionados às transições entre os níveis de energia das camadas eletrônicas $L \to K \in M \to K$, as quais originam linhas de emissão denominadas respectivamente de $K\alpha \in K\beta$. A Figura 5 mostra um exemplo dessas transições para o átomo de cobre (Cu).

Figura 5: Esquema dos níveis de energia do Cu.

1.2 Difração dos Raios-X

O comprimento de onda característico dos raios-X pode ser comparado às distâncias interatômicas de um cristal. Deste modo, quando um feixe de raios-X atinge um cristal, advêm efeitos de difração (Figura 6). A relação entre o comprimento de onda λ e os ângulos de incidência θ_i e reflexão θ_r , implicam em interferência do feixe difratado dada pela lei de Bragg:

$$\theta_i = \theta_r = \theta_n \tag{5}$$

$$2 \ d \ sen\theta_n = n \ \lambda \tag{6}$$

onde d é a distância entre dois planos dos cristais (Figura 6) e n é um número inteiro. Os ângulos de incidência e reflexão são fundamentalmente iguais (Equação 5). Além disso, devem ser iguais a um dos ângulos de Bragg $\theta = \theta_n$, determinados pela Equação 6.

Figura 6: Esquema da difração na condição de Bragg.

Sabendo-se o comprimento de onda da radiação, a condição de Bragg permite determinar a distância interplanar do cristal. Inversamente, conhecendo-se a distância interplanar, o cristal poderá ser utilizado como analisador do feixe de raios-X.

1.3 Absorção de raios-X

Ao atravessar um material, a intensidade da radiação eletromagnética é atenuada, pois o feixe terá parte de seus fótons absorvidos ou espalhados pelo material para direções distintas das inicialmente observadas. Os principais processos físicos que ocorrem na passagem dos raios-X pela matéria são o efeito fotoelétrico e o espalhamento Compton. A produção de pares também ocorre, mas dada a energia mínima necessária (1,02 MeV), esse processo é mais comum no domínio dos raios gama.

A intensidade de atenuação Ida radiação
obedece a uma lei exponencial dada pela Equação 7

$$I/I_0 = e^{-\mu(\lambda,Z)d} \tag{7}$$

onde $\mu(\lambda, Z)$ é denominado coeficiente de atenuação linear, característico do material absorvedor Z e que depende do comprimento de onda da radiação λ ; I_0 é a intensidade da radiação incidente e d é a espessura do material. Dada a proporcionalidade de μ com a massa, é mais comum utilizar o coeficiente de absorção de massa μ/ρ , onde ρ é a densidade de massa. A Equação 8, derivada empiricamente, mostra a dependência dessa quantidade com o material e com o comprimento de onda,

$$\frac{\mu}{\rho} = k(\lambda^3 \cdot Z^3) \tag{8}$$

onde k é uma constante. Esse comportamento é válido no domínio $\lambda < \lambda_K$, sendo λ_K o comprimento de onda correspondente à energia de absorção do nível K. Usando as equações acima, o coeficiente de absorção de massa para um dado material e comprimento de onda pode ser determinado através da contagem de radiação em função da quantidade de material atravessado antes de atingir o detector.

Tratando de uma questão prática, nas medidas de intensidade da radiação para altas taxas de contagem, deverá ser levado em conta o "tempo morto" do detector, período de insensibilidade após detecção da radiação. A correção para altas taxas de contagem N para um valor medido N^* é dado pela relação (Equação 9):

$$N = \frac{N^*}{1 - \tau N^*} \tag{9}$$

onde τ é o tempo morto do detector utilizado. Seu valor é de aproximadamente 90 $\mu s.$

2 OBJETIVOS

Estudar o espectro de emissão de raios-X do cobre e a absorção dos raios-X no alumínio.

3 MATERIAL UTILIZADO

Os materiais utilizados para execução das experiências estão representados na Figura 7:

- unidade básica de raios-X (PHYWE);
- tubo gerador de raios-X Cu;
- colimadores de 1 mm e 2 mm;
- cristais espalhadores LiF e KBr;
- detector de raios-X;
- goniômetro;
- material absorvedor folhas de Al;
- computador PC com Windows XP;
- software Measure (fornecido no computador);
- cabo de dados RS232/USB.

Figura 7: Esquema da unidade básica com seus principais componentes.

4 SISTEMA EXPERIMENTAL

O equipamento utilizado é do fabricante PHYWE, constituído de uma unidade básica (Figura 8) contendo vários componentes intercambiáveis, os quais são guardados no compartimento situado no topo da unidade.

Figura 8: Unidade básica de geração e medidas de raios-X.

Na realização das experiências é utilizado um tubo gerador de raios-X, cujo ânodo é feito de cobre. Na saída do tubo é colocado um colimador limitando a incidência do feixe de raios-X apenas na parte central do cristal espalhador. O goniômetro é o sistema mecânico onde são fixados o cristal espalhador, os materiais de teste e o detector-contador. Ele contém sistemas servo-mecânicos para a variação angular entre o feixe, o cristal e o detector independentemente.

A unidade permite o ajuste da alta tensão aplicada ao tubo gerador – máximo de 35 kV. Possui um sistema de medição de taxas de contagens, que podem ser coletadas através de um visor frontal na parte superior da unidade. Além disso, permite o controle manual das angulações de projeção da radiação sobre o cristal e o detector. Permite também flexibilidade nos ajustes de distância em relação à fonte de radiação e os seus componentes, possibilitando a realização de diversas experiências. Através de uma interface serial, é possível conectar a unidade a um computador através do cabo de conexão RS232/USB e, com o auxílio de um software fornecido pelo fabricante, automatizar a aquisição de dados.

Nunca exponha o tubo contador de radiação primária por um longo período de tempo.

5 PROCEDIMENTOS

1ª etapa: Medidas do espectro

Nesta etapa será realizada a aquisição de dados por um computador. Siga rigorosamente as instruções para evitar danos aos equipamentos.

- 1. Confira no lado esquerdo da Unidade Básica que o tubo gerador de raios-X do elemento Cu esteja inserido. Chame o professor caso algum outro tubo esteja inserido.
- 2. Antes de ligar a Unidade Básica garanta que o cabo USB que a conecta ao computador esteja desligado.
- 3. Ligue a Unidade, acionando o botão na parte traseira do equipamento, e o computador, caso este não esteja ativado.
- 4. Pressione e gire o botão vermelho na parte inferior da porta de vidro para ter acesso à área da experimentação.
- 5. Coloque o colimador de 1mm de diâmetro, na saída do tubo gerador de raio-X.
- 6. Utilize o cristal LiF como material espalhador.
- 7. Conecte a Unidade Básica ao computador através do cabo USB/RS232.
- 8. Feche a porta da Unidade Básica girando e puxando o botão vermelho para a sua posição inicial.
- 9. Inicialize o software Measure®, clicando o ícone "M" estilizado na área de trabalho.

- 10. Para iniciar uma nova medida, selecione a opção New Measurement no menu File, ou o ícone correspondente na janela principal do software.
- 11. Na janela que se abrirá, ajuste os parâmetros conforme os valores mostrados na Figura 9, se o cristal for o LiF. Caso o cristal utilizado seja o KBr, ajuste os parâmetros conforme a Figura 10.
- 12. Pressione o botão Continue. Certifique-se que no visor da unidade apareça a informação **PC REM**, o que indica o controle do equipamento pelo computador.
- 13. Na janela entitulada X-ray device measuring, que aparecerá na tela do computador, pressione Start measurement.
- 14. Pressione Stop measurement quando o goniômetro atingir a posição final (a aquisição de dados será automaticamente interrompida).
- 15. Salve o espectro de raios-X obtido na Área de Trabalho ou Desktop. MEASUREMENT \rightarrow EXPORT DATA \rightarrow (SAVE TO FILE / AS NUMBER)
- 16. Substitua o cristal LiF pelo KBr e o colimador de 1mm por um de 2mm, e repita os procedimentos a partir do passo 10.

X-ray device <serial 90908610-407-19434="" no.:=""></serial>							
Type of me Spectra C transmission curve C impulse count C Compton experim							
X-data Crystal angle				Emissions current Integration time			
Voltage © constant voltage 35 KV			Rotation mod • 2:1 coupled mode				
C variable voltage minimal voltage 5 KV			C fixed crystal angle 45 °				
maximal voltage 35 KV voltage increment 2 KV		Crystal angle					
Setup Anode material Mo				stopping angle 55 ° angle increment 0,1 °			
Crystal	LiF (100); d=201,4pm no absorber no filter			Displays ✓ Crystal angle ✓ Impulse rate ✓ Detector angle ✓ Spectrum ✓ Voltage ✓ Geometry			
Absorber							
Filter							
	Crystal / Absorber / Filter			Emissions current			
Continue Cancel Ver 02.10							

Figura 9: Painel do software de controle com os parâmetros de medição utlizando o cristal de LiF.

X-ray device <serial 90908610-407-19434="" no.:=""></serial>							
Type of me	sion curve	pulse count 🗢 Compton experiment					
X-data Crystal angle		•	Emissions current Integration time				
Voltage © constant voltage	35	κv	Rotation mod 2:1 coupled mode				
C variable voltage minimal voltage 5 KV		k∨	C fixed crystal angle 45 ° C both angles constant				
maximal voltage 35 voltage increment 2		KV KV	Crystal angle 3				
Setup Anode material Mo		stopping angle 75 ° angle increment 0,1 °					
Crystal KBr (100); d=3	29,5pm	-	Displays ▼ Crystal angle ▼ Impulse rate ▼ Detector angle ▼ Spectrum ▼ Voltage ▼ Geometry				
Filter no filter		•					
Crystal / /	Absorber / Filt	er	Cancel Ver 02.10				

Figura 10: Idem ao anterior, mas com parâmetros para o cristal de KBr.

 $2^{\rm a}$ etapa: Medidas de absorção de raio-X

Nesta etapa, a operação será feita manualmente na Unidade Básica, sem o uso do computador. Os próximos quatro passos servem para retomar o controle manual da Unidade Básica.

- 1. Desative o software Measure® no computador, indo ao ícone File e clicando Exit.
- 2. Na barra inferior direita da Área de Trabalho ejete o dispositivo referente à Unidade Básica de Raios-X.
- 3. Desconecte o cabo USB do computador e então desligue a Unidade Básica de Raios-X.
- 4. Espere cerca de 5 segundos e ligue novamente a Unidade Básica.
- 5. Com o tubo gerador de raios-X do elemento Cu e utilizando o cristal espalhador LiF, ajuste manualmente a alta tensão para 35kV, a corrente em 0,6mA e tempo de integração (gate) para 2s.¹

 $^{^1 {\}rm Um}$ detalhe importante é que o botão "ENTER" deve ser pressionado após cada ajuste para que o valor seja realmente salvo.

- 6. Zere a posição do goniômetro, através do botão reset da Unidade Básica.
- 7. Na seção de controle de ângulos, pressione o botão referente ao vínculo entre o cristal e o tubo contador ($\theta_{contador} = 2\theta_{cristal}$, condição de Bragg).
- 8. Posicione o sistema cristal-contador no ângulo do primeiro pico de emissão. Aperte o botão HV-ON.
- 9. Para compensar uma eventual imprecisão de posicionamento, varie entre mais e menos $0,1^{\circ}$ do valor nominal. Anote e use o ângulo de maior contagem.
- 10. Realize cinco medidas de intensidade (I0), através do mostrador na parte superior da Unidade Básica.
- 11. Ajuste para a posição do segundo pico de emissão e repita os dois passos anteriores.
- 12. Zere a posição do goniômetro novamente, através do botão reset.
- 13. Insira o material absorvedor de alumínio no nicho em frente ao contador. Faça a combinação de diferentes espessuras de Al, a partir de 0,02 mm até 0,18 mm.
- 14. Realize cinco medidas de intensidade (I) para cada espessura e para os dois picos mais intensos. A cada ajuste de ângulo, sempre repita o passo 9.

6 TAREFAS

- 1. Analise os espectros obtidos na primeira etapa, explicando cada uma das regiões de excessos de contagem.
- 2. Qual a diferença entre o espectro obtido pelo LiF daquele do KBr? Qual a razão dessa diferença?
- 3. Analise os comprimentos de onda obtidos comparando com os níveis de energia do Cu.
- 4. Utilizando os dados da segunda etapa, faça um gráfico da razão entre as intensidades com material e sem material, isto é I/I_0 , em função da espessura do material. Inclua os pontos correspondentes aos dois comprimentos de onda no mesmo gráfico;
- 5. Através do ajuste das curvas do gráfico, obtenha o valor do coeficiente de absorção de massa μ/ρ para ângulo. Compare com os valores esperados.
- 6. Explique por que os valores μ/ρ são diferentes para os dois ângulos.

7 BIBLIOGRAFIA

- CARUSO, F.; OGURI, V.; Física Moderna: Origens Clássicas e Fundamentos Quânticos. Rio de Janeiro : Elsevier, 2006 - 2ª Reimpressão. 614p.
- EISBERG, R.; RESNICK, R.; Física Quântica: Átomos, Moléculas, Sólidos, Núcleos e Partículas. Rio de Janeiro: Elsevier, 1979 - 29^a Reimpressão. 930 p.
- HERMBECKER. K.; Handbook Physycs: X-Ray Experiments. PHYWE - Series of publication, Second Edition.
- National Institute of Standards and Technology, "NIST X-Ray Attenuation Databases".

http://www.nist.gov/pml/data/xraycoef/index.cfm